Direct observation of reptation at polymer interfaces
ALTHOUGH the diffusion of polymer chains in the liquid state can be described over long distances by classical diffusion laws, chain entanglements make a description of the short-range behaviour more complex. In the standard 'reptation' model 1,2 the polymer chains are considered to move i...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1993-09, Vol.365 (6443), p.235-237 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 6443 |
container_start_page | 235 |
container_title | Nature (London) |
container_volume | 365 |
creator | Russell, T. P. Deline, V. R. Dozier, W. D. Felcher, G. P. Agrawal, G. Wool, R. P. Mays, J. W. |
description | ALTHOUGH the diffusion of polymer chains in the liquid state can be described over long distances by classical diffusion laws, chain entanglements make a description of the short-range behaviour more complex. In the standard 'reptation' model
1,2
the polymer chains are considered to move in a curvilinear manner along their own contours, exhibiting snake-like motion through the entangled sea of surrounding molecules. This model successfully explains many observations
3–13
, yet no direct evidence for reptative motion has been reported. Here we describe the observation of reptation of molecules across the interface between two types of partially deuterated polystyrene polymers. The time evolution of the hyd-rogen and deuterium profiles, determined by dynamic secondary-ion mass spectrometry, can be explained only on the basis of a reptation model. Our results demonstrate that, despite being inevit-ably simplified, the description of polymer diffusion in terms of reptation is essentially correct. |
doi_str_mv | 10.1038/365235a0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26000817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4949563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-9c4706050f4ace8d4d244792225a5a18b038d27339345a99a79c75bd9c9718903</originalsourceid><addsrcrecordid>eNplkE9LxDAQxYMouK6CH6GIiB6qk2TSJEdZ_8KCFz2XbJpKl25Tk66w395oVwU9DcP85s2bR8gxhUsKXF3xQjAuDOyQCUVZ5FgouUsmAEzloHixTw5iXAKAoBInRNw0wdkh84vowrsZGt9lvs6C64exMUPW-3azciFrusGF2lgXD8lebdrojrZ1Sl7ubp9nD_n86f5xdj3PLaIacm1RQgECakxbqsKKIUrNGBNGGKoWyXDFJOeaozBaG6mtFItKWy2p0sCn5GzU7YN_W7s4lKsmWte2pnN-HUtWpEcUlQk8-QMu_Tp0yVvJABEL_ILOR8gGH2NwddmHZmXCpqRQfoZXfoeX0NOtnonWtHUwnW3iD48aGJU6YRcjFtOke3Xh9-w_yQ9TW3hu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204446417</pqid></control><display><type>article</type><title>Direct observation of reptation at polymer interfaces</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Russell, T. P. ; Deline, V. R. ; Dozier, W. D. ; Felcher, G. P. ; Agrawal, G. ; Wool, R. P. ; Mays, J. W.</creator><creatorcontrib>Russell, T. P. ; Deline, V. R. ; Dozier, W. D. ; Felcher, G. P. ; Agrawal, G. ; Wool, R. P. ; Mays, J. W.</creatorcontrib><description>ALTHOUGH the diffusion of polymer chains in the liquid state can be described over long distances by classical diffusion laws, chain entanglements make a description of the short-range behaviour more complex. In the standard 'reptation' model
1,2
the polymer chains are considered to move in a curvilinear manner along their own contours, exhibiting snake-like motion through the entangled sea of surrounding molecules. This model successfully explains many observations
3–13
, yet no direct evidence for reptative motion has been reported. Here we describe the observation of reptation of molecules across the interface between two types of partially deuterated polystyrene polymers. The time evolution of the hyd-rogen and deuterium profiles, determined by dynamic secondary-ion mass spectrometry, can be explained only on the basis of a reptation model. Our results demonstrate that, despite being inevit-ably simplified, the description of polymer diffusion in terms of reptation is essentially correct.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/365235a0</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Applied sciences ; Chemistry ; Exact sciences and technology ; Humanities and Social Sciences ; letter ; Molecules ; multidisciplinary ; Organic polymers ; Physicochemistry of polymers ; Polymers ; Properties and characterization ; Science ; Science (multidisciplinary) ; Surface properties</subject><ispartof>Nature (London), 1993-09, Vol.365 (6443), p.235-237</ispartof><rights>Springer Nature Limited 1993</rights><rights>1993 INIST-CNRS</rights><rights>Copyright Macmillan Journals Ltd. Sep 16, 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-9c4706050f4ace8d4d244792225a5a18b038d27339345a99a79c75bd9c9718903</citedby><cites>FETCH-LOGICAL-c448t-9c4706050f4ace8d4d244792225a5a18b038d27339345a99a79c75bd9c9718903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/365235a0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/365235a0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4902179$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Russell, T. P.</creatorcontrib><creatorcontrib>Deline, V. R.</creatorcontrib><creatorcontrib>Dozier, W. D.</creatorcontrib><creatorcontrib>Felcher, G. P.</creatorcontrib><creatorcontrib>Agrawal, G.</creatorcontrib><creatorcontrib>Wool, R. P.</creatorcontrib><creatorcontrib>Mays, J. W.</creatorcontrib><title>Direct observation of reptation at polymer interfaces</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>ALTHOUGH the diffusion of polymer chains in the liquid state can be described over long distances by classical diffusion laws, chain entanglements make a description of the short-range behaviour more complex. In the standard 'reptation' model
1,2
the polymer chains are considered to move in a curvilinear manner along their own contours, exhibiting snake-like motion through the entangled sea of surrounding molecules. This model successfully explains many observations
3–13
, yet no direct evidence for reptative motion has been reported. Here we describe the observation of reptation of molecules across the interface between two types of partially deuterated polystyrene polymers. The time evolution of the hyd-rogen and deuterium profiles, determined by dynamic secondary-ion mass spectrometry, can be explained only on the basis of a reptation model. Our results demonstrate that, despite being inevit-ably simplified, the description of polymer diffusion in terms of reptation is essentially correct.</description><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Molecules</subject><subject>multidisciplinary</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymers</subject><subject>Properties and characterization</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Surface properties</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE9LxDAQxYMouK6CH6GIiB6qk2TSJEdZ_8KCFz2XbJpKl25Tk66w395oVwU9DcP85s2bR8gxhUsKXF3xQjAuDOyQCUVZ5FgouUsmAEzloHixTw5iXAKAoBInRNw0wdkh84vowrsZGt9lvs6C64exMUPW-3azciFrusGF2lgXD8lebdrojrZ1Sl7ubp9nD_n86f5xdj3PLaIacm1RQgECakxbqsKKIUrNGBNGGKoWyXDFJOeaozBaG6mtFItKWy2p0sCn5GzU7YN_W7s4lKsmWte2pnN-HUtWpEcUlQk8-QMu_Tp0yVvJABEL_ILOR8gGH2NwddmHZmXCpqRQfoZXfoeX0NOtnonWtHUwnW3iD48aGJU6YRcjFtOke3Xh9-w_yQ9TW3hu</recordid><startdate>19930916</startdate><enddate>19930916</enddate><creator>Russell, T. P.</creator><creator>Deline, V. R.</creator><creator>Dozier, W. D.</creator><creator>Felcher, G. P.</creator><creator>Agrawal, G.</creator><creator>Wool, R. P.</creator><creator>Mays, J. W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>F28</scope></search><sort><creationdate>19930916</creationdate><title>Direct observation of reptation at polymer interfaces</title><author>Russell, T. P. ; Deline, V. R. ; Dozier, W. D. ; Felcher, G. P. ; Agrawal, G. ; Wool, R. P. ; Mays, J. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-9c4706050f4ace8d4d244792225a5a18b038d27339345a99a79c75bd9c9718903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Molecules</topic><topic>multidisciplinary</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymers</topic><topic>Properties and characterization</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russell, T. P.</creatorcontrib><creatorcontrib>Deline, V. R.</creatorcontrib><creatorcontrib>Dozier, W. D.</creatorcontrib><creatorcontrib>Felcher, G. P.</creatorcontrib><creatorcontrib>Agrawal, G.</creatorcontrib><creatorcontrib>Wool, R. P.</creatorcontrib><creatorcontrib>Mays, J. W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russell, T. P.</au><au>Deline, V. R.</au><au>Dozier, W. D.</au><au>Felcher, G. P.</au><au>Agrawal, G.</au><au>Wool, R. P.</au><au>Mays, J. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct observation of reptation at polymer interfaces</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>1993-09-16</date><risdate>1993</risdate><volume>365</volume><issue>6443</issue><spage>235</spage><epage>237</epage><pages>235-237</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>ALTHOUGH the diffusion of polymer chains in the liquid state can be described over long distances by classical diffusion laws, chain entanglements make a description of the short-range behaviour more complex. In the standard 'reptation' model
1,2
the polymer chains are considered to move in a curvilinear manner along their own contours, exhibiting snake-like motion through the entangled sea of surrounding molecules. This model successfully explains many observations
3–13
, yet no direct evidence for reptative motion has been reported. Here we describe the observation of reptation of molecules across the interface between two types of partially deuterated polystyrene polymers. The time evolution of the hyd-rogen and deuterium profiles, determined by dynamic secondary-ion mass spectrometry, can be explained only on the basis of a reptation model. Our results demonstrate that, despite being inevit-ably simplified, the description of polymer diffusion in terms of reptation is essentially correct.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/365235a0</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 1993-09, Vol.365 (6443), p.235-237 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_26000817 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | Applied sciences Chemistry Exact sciences and technology Humanities and Social Sciences letter Molecules multidisciplinary Organic polymers Physicochemistry of polymers Polymers Properties and characterization Science Science (multidisciplinary) Surface properties |
title | Direct observation of reptation at polymer interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20observation%20of%20reptation%20at%20polymer%20interfaces&rft.jtitle=Nature%20(London)&rft.au=Russell,%20T.%20P.&rft.date=1993-09-16&rft.volume=365&rft.issue=6443&rft.spage=235&rft.epage=237&rft.pages=235-237&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/365235a0&rft_dat=%3Cproquest_cross%3E4949563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204446417&rft_id=info:pmid/&rfr_iscdi=true |