Partial abductive inference in Bayesian belief networks using a genetic algorithm
Abductive inference in Bayesian belief networks is the process of generating the K most probable configurations given an observed evidence. When we are only interested in a subset of the network's variables, this problem is called partial abductive inference. Both problems are NP-hard, and so e...
Gespeichert in:
Veröffentlicht in: | Pattern recognition letters 1999-11, Vol.20 (11), p.1211-1217 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1217 |
---|---|
container_issue | 11 |
container_start_page | 1211 |
container_title | Pattern recognition letters |
container_volume | 20 |
creator | de Campos, L.M. Gámez, J.A. Moral, S. |
description | Abductive inference in Bayesian belief networks is the process of generating the
K most probable configurations given an observed evidence. When we are only interested in a subset of the network's variables, this problem is called partial abductive inference. Both problems are NP-hard, and so exact computation is not always possible. This paper describes an approximate method based on genetic algorithms to perform partial abductive inference. We have tested the algorithm using the
alarm network and from the experimental results we can conclude that the algorithm presented here is a good tool to perform this kind of probabilistic reasoning. |
doi_str_mv | 10.1016/S0167-8655(99)00088-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25992436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865599000884</els_id><sourcerecordid>25992436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-8cc65de8b3a19db777aaac7589f2df53f706404069f5884a661836335fc29d163</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QchJ9LCabD42OYkWv6Cgop5Dmp3U6Ha3JruV_nt3W_HqZWYYnndgHoSOKTmnhMqLl74UmZJCnGp9RghRKuM7aERVkWcF43wXjf6QfXSQ0kcPSabVCD0_2dgGW2E7KzvXhhXgUHuIULthwtd2DSnYGs-gCuBxDe13Ez8T7lKo59jiOfSr4LCt5k0M7fviEO15WyU4-u1j9HZ78zq5z6aPdw-Tq2nmmBJtppyTogQ1Y5bqclYUhbXWFUJpn5deMF8QyQknUnuhFLdSUsUkY8K7XJdUsjE62d5dxuarg9SaRUgOqsrW0HTJ5ELrnLMBFFvQxSalCN4sY1jYuDaUmEGg2Qg0gx2jtdkINLzPXW5z0H-xChBNcmHwUoYIrjVlE_658AM5CHhK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25992436</pqid></control><display><type>article</type><title>Partial abductive inference in Bayesian belief networks using a genetic algorithm</title><source>Elsevier ScienceDirect Journals Complete</source><creator>de Campos, L.M. ; Gámez, J.A. ; Moral, S.</creator><creatorcontrib>de Campos, L.M. ; Gámez, J.A. ; Moral, S.</creatorcontrib><description>Abductive inference in Bayesian belief networks is the process of generating the
K most probable configurations given an observed evidence. When we are only interested in a subset of the network's variables, this problem is called partial abductive inference. Both problems are NP-hard, and so exact computation is not always possible. This paper describes an approximate method based on genetic algorithms to perform partial abductive inference. We have tested the algorithm using the
alarm network and from the experimental results we can conclude that the algorithm presented here is a good tool to perform this kind of probabilistic reasoning.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/S0167-8655(99)00088-4</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Abductive inference ; Bayesian belief networks ; Genetic algorithms ; Most probable explanation ; Probabilistic reasoning</subject><ispartof>Pattern recognition letters, 1999-11, Vol.20 (11), p.1211-1217</ispartof><rights>1999 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-8cc65de8b3a19db777aaac7589f2df53f706404069f5884a661836335fc29d163</citedby><cites>FETCH-LOGICAL-c385t-8cc65de8b3a19db777aaac7589f2df53f706404069f5884a661836335fc29d163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-8655(99)00088-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>de Campos, L.M.</creatorcontrib><creatorcontrib>Gámez, J.A.</creatorcontrib><creatorcontrib>Moral, S.</creatorcontrib><title>Partial abductive inference in Bayesian belief networks using a genetic algorithm</title><title>Pattern recognition letters</title><description>Abductive inference in Bayesian belief networks is the process of generating the
K most probable configurations given an observed evidence. When we are only interested in a subset of the network's variables, this problem is called partial abductive inference. Both problems are NP-hard, and so exact computation is not always possible. This paper describes an approximate method based on genetic algorithms to perform partial abductive inference. We have tested the algorithm using the
alarm network and from the experimental results we can conclude that the algorithm presented here is a good tool to perform this kind of probabilistic reasoning.</description><subject>Abductive inference</subject><subject>Bayesian belief networks</subject><subject>Genetic algorithms</subject><subject>Most probable explanation</subject><subject>Probabilistic reasoning</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QchJ9LCabD42OYkWv6Cgop5Dmp3U6Ha3JruV_nt3W_HqZWYYnndgHoSOKTmnhMqLl74UmZJCnGp9RghRKuM7aERVkWcF43wXjf6QfXSQ0kcPSabVCD0_2dgGW2E7KzvXhhXgUHuIULthwtd2DSnYGs-gCuBxDe13Ez8T7lKo59jiOfSr4LCt5k0M7fviEO15WyU4-u1j9HZ78zq5z6aPdw-Tq2nmmBJtppyTogQ1Y5bqclYUhbXWFUJpn5deMF8QyQknUnuhFLdSUsUkY8K7XJdUsjE62d5dxuarg9SaRUgOqsrW0HTJ5ELrnLMBFFvQxSalCN4sY1jYuDaUmEGg2Qg0gx2jtdkINLzPXW5z0H-xChBNcmHwUoYIrjVlE_658AM5CHhK</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>de Campos, L.M.</creator><creator>Gámez, J.A.</creator><creator>Moral, S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19991101</creationdate><title>Partial abductive inference in Bayesian belief networks using a genetic algorithm</title><author>de Campos, L.M. ; Gámez, J.A. ; Moral, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-8cc65de8b3a19db777aaac7589f2df53f706404069f5884a661836335fc29d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Abductive inference</topic><topic>Bayesian belief networks</topic><topic>Genetic algorithms</topic><topic>Most probable explanation</topic><topic>Probabilistic reasoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Campos, L.M.</creatorcontrib><creatorcontrib>Gámez, J.A.</creatorcontrib><creatorcontrib>Moral, S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Campos, L.M.</au><au>Gámez, J.A.</au><au>Moral, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial abductive inference in Bayesian belief networks using a genetic algorithm</atitle><jtitle>Pattern recognition letters</jtitle><date>1999-11-01</date><risdate>1999</risdate><volume>20</volume><issue>11</issue><spage>1211</spage><epage>1217</epage><pages>1211-1217</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>Abductive inference in Bayesian belief networks is the process of generating the
K most probable configurations given an observed evidence. When we are only interested in a subset of the network's variables, this problem is called partial abductive inference. Both problems are NP-hard, and so exact computation is not always possible. This paper describes an approximate method based on genetic algorithms to perform partial abductive inference. We have tested the algorithm using the
alarm network and from the experimental results we can conclude that the algorithm presented here is a good tool to perform this kind of probabilistic reasoning.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0167-8655(99)00088-4</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 1999-11, Vol.20 (11), p.1211-1217 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_proquest_miscellaneous_25992436 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Abductive inference Bayesian belief networks Genetic algorithms Most probable explanation Probabilistic reasoning |
title | Partial abductive inference in Bayesian belief networks using a genetic algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20abductive%20inference%20in%20Bayesian%20belief%20networks%20using%20a%20genetic%20algorithm&rft.jtitle=Pattern%20recognition%20letters&rft.au=de%20Campos,%20L.M.&rft.date=1999-11-01&rft.volume=20&rft.issue=11&rft.spage=1211&rft.epage=1217&rft.pages=1211-1217&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/S0167-8655(99)00088-4&rft_dat=%3Cproquest_cross%3E25992436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25992436&rft_id=info:pmid/&rft_els_id=S0167865599000884&rfr_iscdi=true |