Partial abductive inference in Bayesian belief networks using a genetic algorithm

Abductive inference in Bayesian belief networks is the process of generating the K most probable configurations given an observed evidence. When we are only interested in a subset of the network's variables, this problem is called partial abductive inference. Both problems are NP-hard, and so e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters 1999-11, Vol.20 (11), p.1211-1217
Hauptverfasser: de Campos, L.M., Gámez, J.A., Moral, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1217
container_issue 11
container_start_page 1211
container_title Pattern recognition letters
container_volume 20
creator de Campos, L.M.
Gámez, J.A.
Moral, S.
description Abductive inference in Bayesian belief networks is the process of generating the K most probable configurations given an observed evidence. When we are only interested in a subset of the network's variables, this problem is called partial abductive inference. Both problems are NP-hard, and so exact computation is not always possible. This paper describes an approximate method based on genetic algorithms to perform partial abductive inference. We have tested the algorithm using the alarm network and from the experimental results we can conclude that the algorithm presented here is a good tool to perform this kind of probabilistic reasoning.
doi_str_mv 10.1016/S0167-8655(99)00088-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25992436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865599000884</els_id><sourcerecordid>25992436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-8cc65de8b3a19db777aaac7589f2df53f706404069f5884a661836335fc29d163</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QchJ9LCabD42OYkWv6Cgop5Dmp3U6Ha3JruV_nt3W_HqZWYYnndgHoSOKTmnhMqLl74UmZJCnGp9RghRKuM7aERVkWcF43wXjf6QfXSQ0kcPSabVCD0_2dgGW2E7KzvXhhXgUHuIULthwtd2DSnYGs-gCuBxDe13Ez8T7lKo59jiOfSr4LCt5k0M7fviEO15WyU4-u1j9HZ78zq5z6aPdw-Tq2nmmBJtppyTogQ1Y5bqclYUhbXWFUJpn5deMF8QyQknUnuhFLdSUsUkY8K7XJdUsjE62d5dxuarg9SaRUgOqsrW0HTJ5ELrnLMBFFvQxSalCN4sY1jYuDaUmEGg2Qg0gx2jtdkINLzPXW5z0H-xChBNcmHwUoYIrjVlE_658AM5CHhK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25992436</pqid></control><display><type>article</type><title>Partial abductive inference in Bayesian belief networks using a genetic algorithm</title><source>Elsevier ScienceDirect Journals Complete</source><creator>de Campos, L.M. ; Gámez, J.A. ; Moral, S.</creator><creatorcontrib>de Campos, L.M. ; Gámez, J.A. ; Moral, S.</creatorcontrib><description>Abductive inference in Bayesian belief networks is the process of generating the K most probable configurations given an observed evidence. When we are only interested in a subset of the network's variables, this problem is called partial abductive inference. Both problems are NP-hard, and so exact computation is not always possible. This paper describes an approximate method based on genetic algorithms to perform partial abductive inference. We have tested the algorithm using the alarm network and from the experimental results we can conclude that the algorithm presented here is a good tool to perform this kind of probabilistic reasoning.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/S0167-8655(99)00088-4</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Abductive inference ; Bayesian belief networks ; Genetic algorithms ; Most probable explanation ; Probabilistic reasoning</subject><ispartof>Pattern recognition letters, 1999-11, Vol.20 (11), p.1211-1217</ispartof><rights>1999 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-8cc65de8b3a19db777aaac7589f2df53f706404069f5884a661836335fc29d163</citedby><cites>FETCH-LOGICAL-c385t-8cc65de8b3a19db777aaac7589f2df53f706404069f5884a661836335fc29d163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-8655(99)00088-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>de Campos, L.M.</creatorcontrib><creatorcontrib>Gámez, J.A.</creatorcontrib><creatorcontrib>Moral, S.</creatorcontrib><title>Partial abductive inference in Bayesian belief networks using a genetic algorithm</title><title>Pattern recognition letters</title><description>Abductive inference in Bayesian belief networks is the process of generating the K most probable configurations given an observed evidence. When we are only interested in a subset of the network's variables, this problem is called partial abductive inference. Both problems are NP-hard, and so exact computation is not always possible. This paper describes an approximate method based on genetic algorithms to perform partial abductive inference. We have tested the algorithm using the alarm network and from the experimental results we can conclude that the algorithm presented here is a good tool to perform this kind of probabilistic reasoning.</description><subject>Abductive inference</subject><subject>Bayesian belief networks</subject><subject>Genetic algorithms</subject><subject>Most probable explanation</subject><subject>Probabilistic reasoning</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QchJ9LCabD42OYkWv6Cgop5Dmp3U6Ha3JruV_nt3W_HqZWYYnndgHoSOKTmnhMqLl74UmZJCnGp9RghRKuM7aERVkWcF43wXjf6QfXSQ0kcPSabVCD0_2dgGW2E7KzvXhhXgUHuIULthwtd2DSnYGs-gCuBxDe13Ez8T7lKo59jiOfSr4LCt5k0M7fviEO15WyU4-u1j9HZ78zq5z6aPdw-Tq2nmmBJtppyTogQ1Y5bqclYUhbXWFUJpn5deMF8QyQknUnuhFLdSUsUkY8K7XJdUsjE62d5dxuarg9SaRUgOqsrW0HTJ5ELrnLMBFFvQxSalCN4sY1jYuDaUmEGg2Qg0gx2jtdkINLzPXW5z0H-xChBNcmHwUoYIrjVlE_658AM5CHhK</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>de Campos, L.M.</creator><creator>Gámez, J.A.</creator><creator>Moral, S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19991101</creationdate><title>Partial abductive inference in Bayesian belief networks using a genetic algorithm</title><author>de Campos, L.M. ; Gámez, J.A. ; Moral, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-8cc65de8b3a19db777aaac7589f2df53f706404069f5884a661836335fc29d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Abductive inference</topic><topic>Bayesian belief networks</topic><topic>Genetic algorithms</topic><topic>Most probable explanation</topic><topic>Probabilistic reasoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Campos, L.M.</creatorcontrib><creatorcontrib>Gámez, J.A.</creatorcontrib><creatorcontrib>Moral, S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Campos, L.M.</au><au>Gámez, J.A.</au><au>Moral, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial abductive inference in Bayesian belief networks using a genetic algorithm</atitle><jtitle>Pattern recognition letters</jtitle><date>1999-11-01</date><risdate>1999</risdate><volume>20</volume><issue>11</issue><spage>1211</spage><epage>1217</epage><pages>1211-1217</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>Abductive inference in Bayesian belief networks is the process of generating the K most probable configurations given an observed evidence. When we are only interested in a subset of the network's variables, this problem is called partial abductive inference. Both problems are NP-hard, and so exact computation is not always possible. This paper describes an approximate method based on genetic algorithms to perform partial abductive inference. We have tested the algorithm using the alarm network and from the experimental results we can conclude that the algorithm presented here is a good tool to perform this kind of probabilistic reasoning.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0167-8655(99)00088-4</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 1999-11, Vol.20 (11), p.1211-1217
issn 0167-8655
1872-7344
language eng
recordid cdi_proquest_miscellaneous_25992436
source Elsevier ScienceDirect Journals Complete
subjects Abductive inference
Bayesian belief networks
Genetic algorithms
Most probable explanation
Probabilistic reasoning
title Partial abductive inference in Bayesian belief networks using a genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20abductive%20inference%20in%20Bayesian%20belief%20networks%20using%20a%20genetic%20algorithm&rft.jtitle=Pattern%20recognition%20letters&rft.au=de%20Campos,%20L.M.&rft.date=1999-11-01&rft.volume=20&rft.issue=11&rft.spage=1211&rft.epage=1217&rft.pages=1211-1217&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/S0167-8655(99)00088-4&rft_dat=%3Cproquest_cross%3E25992436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25992436&rft_id=info:pmid/&rft_els_id=S0167865599000884&rfr_iscdi=true