An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field

•EEG-based ML techniques for seizure prediction achieved promising results.•Various factors can influence the performance of EEG-based ML algorithms.•ML-based algorithms provide considerable opportunities for clinicians in the field.•Prediction model including patient clinical characteristics can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2022-01, Vol.481, p.197-218
Hauptverfasser: Maimaiti, Buajieerguli, Meng, Hongmei, Lv, Yudan, Qiu, Jiqing, Zhu, Zhanpeng, Xie, Yinyin, Li, Yue, Yu-Cheng, Zhao, Weixuan, Liu, Jiayu, Li, Mingyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 218
container_issue
container_start_page 197
container_title Neuroscience
container_volume 481
creator Maimaiti, Buajieerguli
Meng, Hongmei
Lv, Yudan
Qiu, Jiqing
Zhu, Zhanpeng
Xie, Yinyin
Li, Yue
Yu-Cheng
Zhao, Weixuan
Liu, Jiayu
Li, Mingyang
description •EEG-based ML techniques for seizure prediction achieved promising results.•Various factors can influence the performance of EEG-based ML algorithms.•ML-based algorithms provide considerable opportunities for clinicians in the field.•Prediction model including patient clinical characteristics can be further developed.•With cooperation of related fields, the area can be advanced by novel ML based techniques. The unpredictability of epileptic seizures is one of the most problematic aspects of the field of epilepsy. Methods or devices capable of detecting seizures minutes before they occur may help prevent injury or even death and significantly improve the quality of life. Machine learning (ML) is an emerging technology that can markedly enhance algorithm performance by interpreting data. ML has gained increasing attention from medical researchers in recent years. Its epilepsy applications range from the localization of the epileptic region, predicting the medical or surgical outcome of epilepsy, and automated electroencephalography (EEG) analysis to seizure prediction. While ML has good prospects with regard to detecting epileptic seizures via EEG signals, many clinicians are still unfamiliar with this field. This work briefly summarizes the history and recent significant progress made in this field and clarifies the essential components of the automatic seizure detection system using ML methodologies for clinicians. This review also proposes how neurologists can actively contribute to ensure improvements in seizure prediction using EEG-based ML.
doi_str_mv 10.1016/j.neuroscience.2021.11.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2599184441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452221005765</els_id><sourcerecordid>2599184441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-21281af01421f70eefe1f6074358c16f3ee67fc20e867b8430070c0429aea5ea3</originalsourceid><addsrcrecordid>eNqNkE1vEzEQhi1ERUPhLyCLE5fdemzvepdb1aalUtogAWfL8Y4bRxs72Lvl49d3QwLi2LnM5f2YeQh5D6wEBvX5pgw4ppitx2Cx5IxDCVAyUC_IDBolClVJ-ZLMmGB1ISvOT8nrnDdsmkqKV-RUSNWKVjQz8vMi0OUjpkePP2h0dD6_KVYmY0fvjF37gHSBJgUfHugdDuvYZeoD_YL-95iQfk7YeTv4GKgJHV3udjENY_CDx0xdTPR-f2gfH3we_hiHtc_02mPfvSEnzvQZ3x73Gfl2Pf96-alYLG9uLy8WhRUNGwoOvAHjGEgOTjFEh-BqpqSoGgu1E4i1cpYzbGq1aqRgTDHLJG8NmgqNOCMfDrm7FL-PmAe99dli35uAccyaV20LjZQSJunHg9ROcHNCp3fJb036pYHpPXm90f-T13vyGkBP5Cfzu2PPuNpi98_6F_UkuDoIcPp2wp30MabzCe2gu-if0_MEtXeccQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599184441</pqid></control><display><type>article</type><title>An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Maimaiti, Buajieerguli ; Meng, Hongmei ; Lv, Yudan ; Qiu, Jiqing ; Zhu, Zhanpeng ; Xie, Yinyin ; Li, Yue ; Yu-Cheng ; Zhao, Weixuan ; Liu, Jiayu ; Li, Mingyang</creator><creatorcontrib>Maimaiti, Buajieerguli ; Meng, Hongmei ; Lv, Yudan ; Qiu, Jiqing ; Zhu, Zhanpeng ; Xie, Yinyin ; Li, Yue ; Yu-Cheng ; Zhao, Weixuan ; Liu, Jiayu ; Li, Mingyang</creatorcontrib><description>•EEG-based ML techniques for seizure prediction achieved promising results.•Various factors can influence the performance of EEG-based ML algorithms.•ML-based algorithms provide considerable opportunities for clinicians in the field.•Prediction model including patient clinical characteristics can be further developed.•With cooperation of related fields, the area can be advanced by novel ML based techniques. The unpredictability of epileptic seizures is one of the most problematic aspects of the field of epilepsy. Methods or devices capable of detecting seizures minutes before they occur may help prevent injury or even death and significantly improve the quality of life. Machine learning (ML) is an emerging technology that can markedly enhance algorithm performance by interpreting data. ML has gained increasing attention from medical researchers in recent years. Its epilepsy applications range from the localization of the epileptic region, predicting the medical or surgical outcome of epilepsy, and automated electroencephalography (EEG) analysis to seizure prediction. While ML has good prospects with regard to detecting epileptic seizures via EEG signals, many clinicians are still unfamiliar with this field. This work briefly summarizes the history and recent significant progress made in this field and clarifies the essential components of the automatic seizure detection system using ML methodologies for clinicians. This review also proposes how neurologists can actively contribute to ensure improvements in seizure prediction using EEG-based ML.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/j.neuroscience.2021.11.017</identifier><identifier>PMID: 34793938</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; artificial intelligence (AI) ; electroencephalography ; Electroencephalography - methods ; epilepsy ; Humans ; Machine Learning ; machine learning (ML) ; Neurologists ; Quality of Life ; seizure prediction ; Seizures - diagnosis</subject><ispartof>Neuroscience, 2022-01, Vol.481, p.197-218</ispartof><rights>2021 IBRO</rights><rights>Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-21281af01421f70eefe1f6074358c16f3ee67fc20e867b8430070c0429aea5ea3</citedby><cites>FETCH-LOGICAL-c380t-21281af01421f70eefe1f6074358c16f3ee67fc20e867b8430070c0429aea5ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuroscience.2021.11.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34793938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maimaiti, Buajieerguli</creatorcontrib><creatorcontrib>Meng, Hongmei</creatorcontrib><creatorcontrib>Lv, Yudan</creatorcontrib><creatorcontrib>Qiu, Jiqing</creatorcontrib><creatorcontrib>Zhu, Zhanpeng</creatorcontrib><creatorcontrib>Xie, Yinyin</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Yu-Cheng</creatorcontrib><creatorcontrib>Zhao, Weixuan</creatorcontrib><creatorcontrib>Liu, Jiayu</creatorcontrib><creatorcontrib>Li, Mingyang</creatorcontrib><title>An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>•EEG-based ML techniques for seizure prediction achieved promising results.•Various factors can influence the performance of EEG-based ML algorithms.•ML-based algorithms provide considerable opportunities for clinicians in the field.•Prediction model including patient clinical characteristics can be further developed.•With cooperation of related fields, the area can be advanced by novel ML based techniques. The unpredictability of epileptic seizures is one of the most problematic aspects of the field of epilepsy. Methods or devices capable of detecting seizures minutes before they occur may help prevent injury or even death and significantly improve the quality of life. Machine learning (ML) is an emerging technology that can markedly enhance algorithm performance by interpreting data. ML has gained increasing attention from medical researchers in recent years. Its epilepsy applications range from the localization of the epileptic region, predicting the medical or surgical outcome of epilepsy, and automated electroencephalography (EEG) analysis to seizure prediction. While ML has good prospects with regard to detecting epileptic seizures via EEG signals, many clinicians are still unfamiliar with this field. This work briefly summarizes the history and recent significant progress made in this field and clarifies the essential components of the automatic seizure detection system using ML methodologies for clinicians. This review also proposes how neurologists can actively contribute to ensure improvements in seizure prediction using EEG-based ML.</description><subject>Algorithms</subject><subject>artificial intelligence (AI)</subject><subject>electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>epilepsy</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>machine learning (ML)</subject><subject>Neurologists</subject><subject>Quality of Life</subject><subject>seizure prediction</subject><subject>Seizures - diagnosis</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1vEzEQhi1ERUPhLyCLE5fdemzvepdb1aalUtogAWfL8Y4bRxs72Lvl49d3QwLi2LnM5f2YeQh5D6wEBvX5pgw4ppitx2Cx5IxDCVAyUC_IDBolClVJ-ZLMmGB1ISvOT8nrnDdsmkqKV-RUSNWKVjQz8vMi0OUjpkePP2h0dD6_KVYmY0fvjF37gHSBJgUfHugdDuvYZeoD_YL-95iQfk7YeTv4GKgJHV3udjENY_CDx0xdTPR-f2gfH3we_hiHtc_02mPfvSEnzvQZ3x73Gfl2Pf96-alYLG9uLy8WhRUNGwoOvAHjGEgOTjFEh-BqpqSoGgu1E4i1cpYzbGq1aqRgTDHLJG8NmgqNOCMfDrm7FL-PmAe99dli35uAccyaV20LjZQSJunHg9ROcHNCp3fJb036pYHpPXm90f-T13vyGkBP5Cfzu2PPuNpi98_6F_UkuDoIcPp2wp30MabzCe2gu-if0_MEtXeccQ</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Maimaiti, Buajieerguli</creator><creator>Meng, Hongmei</creator><creator>Lv, Yudan</creator><creator>Qiu, Jiqing</creator><creator>Zhu, Zhanpeng</creator><creator>Xie, Yinyin</creator><creator>Li, Yue</creator><creator>Yu-Cheng</creator><creator>Zhao, Weixuan</creator><creator>Liu, Jiayu</creator><creator>Li, Mingyang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220115</creationdate><title>An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field</title><author>Maimaiti, Buajieerguli ; Meng, Hongmei ; Lv, Yudan ; Qiu, Jiqing ; Zhu, Zhanpeng ; Xie, Yinyin ; Li, Yue ; Yu-Cheng ; Zhao, Weixuan ; Liu, Jiayu ; Li, Mingyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-21281af01421f70eefe1f6074358c16f3ee67fc20e867b8430070c0429aea5ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>artificial intelligence (AI)</topic><topic>electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>epilepsy</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>machine learning (ML)</topic><topic>Neurologists</topic><topic>Quality of Life</topic><topic>seizure prediction</topic><topic>Seizures - diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maimaiti, Buajieerguli</creatorcontrib><creatorcontrib>Meng, Hongmei</creatorcontrib><creatorcontrib>Lv, Yudan</creatorcontrib><creatorcontrib>Qiu, Jiqing</creatorcontrib><creatorcontrib>Zhu, Zhanpeng</creatorcontrib><creatorcontrib>Xie, Yinyin</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Yu-Cheng</creatorcontrib><creatorcontrib>Zhao, Weixuan</creatorcontrib><creatorcontrib>Liu, Jiayu</creatorcontrib><creatorcontrib>Li, Mingyang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maimaiti, Buajieerguli</au><au>Meng, Hongmei</au><au>Lv, Yudan</au><au>Qiu, Jiqing</au><au>Zhu, Zhanpeng</au><au>Xie, Yinyin</au><au>Li, Yue</au><au>Yu-Cheng</au><au>Zhao, Weixuan</au><au>Liu, Jiayu</au><au>Li, Mingyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>2022-01-15</date><risdate>2022</risdate><volume>481</volume><spage>197</spage><epage>218</epage><pages>197-218</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><abstract>•EEG-based ML techniques for seizure prediction achieved promising results.•Various factors can influence the performance of EEG-based ML algorithms.•ML-based algorithms provide considerable opportunities for clinicians in the field.•Prediction model including patient clinical characteristics can be further developed.•With cooperation of related fields, the area can be advanced by novel ML based techniques. The unpredictability of epileptic seizures is one of the most problematic aspects of the field of epilepsy. Methods or devices capable of detecting seizures minutes before they occur may help prevent injury or even death and significantly improve the quality of life. Machine learning (ML) is an emerging technology that can markedly enhance algorithm performance by interpreting data. ML has gained increasing attention from medical researchers in recent years. Its epilepsy applications range from the localization of the epileptic region, predicting the medical or surgical outcome of epilepsy, and automated electroencephalography (EEG) analysis to seizure prediction. While ML has good prospects with regard to detecting epileptic seizures via EEG signals, many clinicians are still unfamiliar with this field. This work briefly summarizes the history and recent significant progress made in this field and clarifies the essential components of the automatic seizure detection system using ML methodologies for clinicians. This review also proposes how neurologists can actively contribute to ensure improvements in seizure prediction using EEG-based ML.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>34793938</pmid><doi>10.1016/j.neuroscience.2021.11.017</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-4522
ispartof Neuroscience, 2022-01, Vol.481, p.197-218
issn 0306-4522
1873-7544
language eng
recordid cdi_proquest_miscellaneous_2599184441
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
artificial intelligence (AI)
electroencephalography
Electroencephalography - methods
epilepsy
Humans
Machine Learning
machine learning (ML)
Neurologists
Quality of Life
seizure prediction
Seizures - diagnosis
title An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T15%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Overview%20of%20EEG-based%20Machine%20Learning%20Methods%20in%20Seizure%20Prediction%20and%20Opportunities%20for%20Neurologists%20in%20this%20Field&rft.jtitle=Neuroscience&rft.au=Maimaiti,%20Buajieerguli&rft.date=2022-01-15&rft.volume=481&rft.spage=197&rft.epage=218&rft.pages=197-218&rft.issn=0306-4522&rft.eissn=1873-7544&rft_id=info:doi/10.1016/j.neuroscience.2021.11.017&rft_dat=%3Cproquest_cross%3E2599184441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599184441&rft_id=info:pmid/34793938&rft_els_id=S0306452221005765&rfr_iscdi=true