An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field
•EEG-based ML techniques for seizure prediction achieved promising results.•Various factors can influence the performance of EEG-based ML algorithms.•ML-based algorithms provide considerable opportunities for clinicians in the field.•Prediction model including patient clinical characteristics can be...
Gespeichert in:
Veröffentlicht in: | Neuroscience 2022-01, Vol.481, p.197-218 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 218 |
---|---|
container_issue | |
container_start_page | 197 |
container_title | Neuroscience |
container_volume | 481 |
creator | Maimaiti, Buajieerguli Meng, Hongmei Lv, Yudan Qiu, Jiqing Zhu, Zhanpeng Xie, Yinyin Li, Yue Yu-Cheng Zhao, Weixuan Liu, Jiayu Li, Mingyang |
description | •EEG-based ML techniques for seizure prediction achieved promising results.•Various factors can influence the performance of EEG-based ML algorithms.•ML-based algorithms provide considerable opportunities for clinicians in the field.•Prediction model including patient clinical characteristics can be further developed.•With cooperation of related fields, the area can be advanced by novel ML based techniques.
The unpredictability of epileptic seizures is one of the most problematic aspects of the field of epilepsy. Methods or devices capable of detecting seizures minutes before they occur may help prevent injury or even death and significantly improve the quality of life. Machine learning (ML) is an emerging technology that can markedly enhance algorithm performance by interpreting data. ML has gained increasing attention from medical researchers in recent years. Its epilepsy applications range from the localization of the epileptic region, predicting the medical or surgical outcome of epilepsy, and automated electroencephalography (EEG) analysis to seizure prediction. While ML has good prospects with regard to detecting epileptic seizures via EEG signals, many clinicians are still unfamiliar with this field. This work briefly summarizes the history and recent significant progress made in this field and clarifies the essential components of the automatic seizure detection system using ML methodologies for clinicians. This review also proposes how neurologists can actively contribute to ensure improvements in seizure prediction using EEG-based ML. |
doi_str_mv | 10.1016/j.neuroscience.2021.11.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2599184441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452221005765</els_id><sourcerecordid>2599184441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-21281af01421f70eefe1f6074358c16f3ee67fc20e867b8430070c0429aea5ea3</originalsourceid><addsrcrecordid>eNqNkE1vEzEQhi1ERUPhLyCLE5fdemzvepdb1aalUtogAWfL8Y4bRxs72Lvl49d3QwLi2LnM5f2YeQh5D6wEBvX5pgw4ppitx2Cx5IxDCVAyUC_IDBolClVJ-ZLMmGB1ISvOT8nrnDdsmkqKV-RUSNWKVjQz8vMi0OUjpkePP2h0dD6_KVYmY0fvjF37gHSBJgUfHugdDuvYZeoD_YL-95iQfk7YeTv4GKgJHV3udjENY_CDx0xdTPR-f2gfH3we_hiHtc_02mPfvSEnzvQZ3x73Gfl2Pf96-alYLG9uLy8WhRUNGwoOvAHjGEgOTjFEh-BqpqSoGgu1E4i1cpYzbGq1aqRgTDHLJG8NmgqNOCMfDrm7FL-PmAe99dli35uAccyaV20LjZQSJunHg9ROcHNCp3fJb036pYHpPXm90f-T13vyGkBP5Cfzu2PPuNpi98_6F_UkuDoIcPp2wp30MabzCe2gu-if0_MEtXeccQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599184441</pqid></control><display><type>article</type><title>An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Maimaiti, Buajieerguli ; Meng, Hongmei ; Lv, Yudan ; Qiu, Jiqing ; Zhu, Zhanpeng ; Xie, Yinyin ; Li, Yue ; Yu-Cheng ; Zhao, Weixuan ; Liu, Jiayu ; Li, Mingyang</creator><creatorcontrib>Maimaiti, Buajieerguli ; Meng, Hongmei ; Lv, Yudan ; Qiu, Jiqing ; Zhu, Zhanpeng ; Xie, Yinyin ; Li, Yue ; Yu-Cheng ; Zhao, Weixuan ; Liu, Jiayu ; Li, Mingyang</creatorcontrib><description>•EEG-based ML techniques for seizure prediction achieved promising results.•Various factors can influence the performance of EEG-based ML algorithms.•ML-based algorithms provide considerable opportunities for clinicians in the field.•Prediction model including patient clinical characteristics can be further developed.•With cooperation of related fields, the area can be advanced by novel ML based techniques.
The unpredictability of epileptic seizures is one of the most problematic aspects of the field of epilepsy. Methods or devices capable of detecting seizures minutes before they occur may help prevent injury or even death and significantly improve the quality of life. Machine learning (ML) is an emerging technology that can markedly enhance algorithm performance by interpreting data. ML has gained increasing attention from medical researchers in recent years. Its epilepsy applications range from the localization of the epileptic region, predicting the medical or surgical outcome of epilepsy, and automated electroencephalography (EEG) analysis to seizure prediction. While ML has good prospects with regard to detecting epileptic seizures via EEG signals, many clinicians are still unfamiliar with this field. This work briefly summarizes the history and recent significant progress made in this field and clarifies the essential components of the automatic seizure detection system using ML methodologies for clinicians. This review also proposes how neurologists can actively contribute to ensure improvements in seizure prediction using EEG-based ML.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/j.neuroscience.2021.11.017</identifier><identifier>PMID: 34793938</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; artificial intelligence (AI) ; electroencephalography ; Electroencephalography - methods ; epilepsy ; Humans ; Machine Learning ; machine learning (ML) ; Neurologists ; Quality of Life ; seizure prediction ; Seizures - diagnosis</subject><ispartof>Neuroscience, 2022-01, Vol.481, p.197-218</ispartof><rights>2021 IBRO</rights><rights>Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-21281af01421f70eefe1f6074358c16f3ee67fc20e867b8430070c0429aea5ea3</citedby><cites>FETCH-LOGICAL-c380t-21281af01421f70eefe1f6074358c16f3ee67fc20e867b8430070c0429aea5ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuroscience.2021.11.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34793938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maimaiti, Buajieerguli</creatorcontrib><creatorcontrib>Meng, Hongmei</creatorcontrib><creatorcontrib>Lv, Yudan</creatorcontrib><creatorcontrib>Qiu, Jiqing</creatorcontrib><creatorcontrib>Zhu, Zhanpeng</creatorcontrib><creatorcontrib>Xie, Yinyin</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Yu-Cheng</creatorcontrib><creatorcontrib>Zhao, Weixuan</creatorcontrib><creatorcontrib>Liu, Jiayu</creatorcontrib><creatorcontrib>Li, Mingyang</creatorcontrib><title>An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>•EEG-based ML techniques for seizure prediction achieved promising results.•Various factors can influence the performance of EEG-based ML algorithms.•ML-based algorithms provide considerable opportunities for clinicians in the field.•Prediction model including patient clinical characteristics can be further developed.•With cooperation of related fields, the area can be advanced by novel ML based techniques.
The unpredictability of epileptic seizures is one of the most problematic aspects of the field of epilepsy. Methods or devices capable of detecting seizures minutes before they occur may help prevent injury or even death and significantly improve the quality of life. Machine learning (ML) is an emerging technology that can markedly enhance algorithm performance by interpreting data. ML has gained increasing attention from medical researchers in recent years. Its epilepsy applications range from the localization of the epileptic region, predicting the medical or surgical outcome of epilepsy, and automated electroencephalography (EEG) analysis to seizure prediction. While ML has good prospects with regard to detecting epileptic seizures via EEG signals, many clinicians are still unfamiliar with this field. This work briefly summarizes the history and recent significant progress made in this field and clarifies the essential components of the automatic seizure detection system using ML methodologies for clinicians. This review also proposes how neurologists can actively contribute to ensure improvements in seizure prediction using EEG-based ML.</description><subject>Algorithms</subject><subject>artificial intelligence (AI)</subject><subject>electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>epilepsy</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>machine learning (ML)</subject><subject>Neurologists</subject><subject>Quality of Life</subject><subject>seizure prediction</subject><subject>Seizures - diagnosis</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1vEzEQhi1ERUPhLyCLE5fdemzvepdb1aalUtogAWfL8Y4bRxs72Lvl49d3QwLi2LnM5f2YeQh5D6wEBvX5pgw4ppitx2Cx5IxDCVAyUC_IDBolClVJ-ZLMmGB1ISvOT8nrnDdsmkqKV-RUSNWKVjQz8vMi0OUjpkePP2h0dD6_KVYmY0fvjF37gHSBJgUfHugdDuvYZeoD_YL-95iQfk7YeTv4GKgJHV3udjENY_CDx0xdTPR-f2gfH3we_hiHtc_02mPfvSEnzvQZ3x73Gfl2Pf96-alYLG9uLy8WhRUNGwoOvAHjGEgOTjFEh-BqpqSoGgu1E4i1cpYzbGq1aqRgTDHLJG8NmgqNOCMfDrm7FL-PmAe99dli35uAccyaV20LjZQSJunHg9ROcHNCp3fJb036pYHpPXm90f-T13vyGkBP5Cfzu2PPuNpi98_6F_UkuDoIcPp2wp30MabzCe2gu-if0_MEtXeccQ</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Maimaiti, Buajieerguli</creator><creator>Meng, Hongmei</creator><creator>Lv, Yudan</creator><creator>Qiu, Jiqing</creator><creator>Zhu, Zhanpeng</creator><creator>Xie, Yinyin</creator><creator>Li, Yue</creator><creator>Yu-Cheng</creator><creator>Zhao, Weixuan</creator><creator>Liu, Jiayu</creator><creator>Li, Mingyang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220115</creationdate><title>An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field</title><author>Maimaiti, Buajieerguli ; Meng, Hongmei ; Lv, Yudan ; Qiu, Jiqing ; Zhu, Zhanpeng ; Xie, Yinyin ; Li, Yue ; Yu-Cheng ; Zhao, Weixuan ; Liu, Jiayu ; Li, Mingyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-21281af01421f70eefe1f6074358c16f3ee67fc20e867b8430070c0429aea5ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>artificial intelligence (AI)</topic><topic>electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>epilepsy</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>machine learning (ML)</topic><topic>Neurologists</topic><topic>Quality of Life</topic><topic>seizure prediction</topic><topic>Seizures - diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maimaiti, Buajieerguli</creatorcontrib><creatorcontrib>Meng, Hongmei</creatorcontrib><creatorcontrib>Lv, Yudan</creatorcontrib><creatorcontrib>Qiu, Jiqing</creatorcontrib><creatorcontrib>Zhu, Zhanpeng</creatorcontrib><creatorcontrib>Xie, Yinyin</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Yu-Cheng</creatorcontrib><creatorcontrib>Zhao, Weixuan</creatorcontrib><creatorcontrib>Liu, Jiayu</creatorcontrib><creatorcontrib>Li, Mingyang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maimaiti, Buajieerguli</au><au>Meng, Hongmei</au><au>Lv, Yudan</au><au>Qiu, Jiqing</au><au>Zhu, Zhanpeng</au><au>Xie, Yinyin</au><au>Li, Yue</au><au>Yu-Cheng</au><au>Zhao, Weixuan</au><au>Liu, Jiayu</au><au>Li, Mingyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>2022-01-15</date><risdate>2022</risdate><volume>481</volume><spage>197</spage><epage>218</epage><pages>197-218</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><abstract>•EEG-based ML techniques for seizure prediction achieved promising results.•Various factors can influence the performance of EEG-based ML algorithms.•ML-based algorithms provide considerable opportunities for clinicians in the field.•Prediction model including patient clinical characteristics can be further developed.•With cooperation of related fields, the area can be advanced by novel ML based techniques.
The unpredictability of epileptic seizures is one of the most problematic aspects of the field of epilepsy. Methods or devices capable of detecting seizures minutes before they occur may help prevent injury or even death and significantly improve the quality of life. Machine learning (ML) is an emerging technology that can markedly enhance algorithm performance by interpreting data. ML has gained increasing attention from medical researchers in recent years. Its epilepsy applications range from the localization of the epileptic region, predicting the medical or surgical outcome of epilepsy, and automated electroencephalography (EEG) analysis to seizure prediction. While ML has good prospects with regard to detecting epileptic seizures via EEG signals, many clinicians are still unfamiliar with this field. This work briefly summarizes the history and recent significant progress made in this field and clarifies the essential components of the automatic seizure detection system using ML methodologies for clinicians. This review also proposes how neurologists can actively contribute to ensure improvements in seizure prediction using EEG-based ML.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>34793938</pmid><doi>10.1016/j.neuroscience.2021.11.017</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4522 |
ispartof | Neuroscience, 2022-01, Vol.481, p.197-218 |
issn | 0306-4522 1873-7544 |
language | eng |
recordid | cdi_proquest_miscellaneous_2599184441 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms artificial intelligence (AI) electroencephalography Electroencephalography - methods epilepsy Humans Machine Learning machine learning (ML) Neurologists Quality of Life seizure prediction Seizures - diagnosis |
title | An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T15%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Overview%20of%20EEG-based%20Machine%20Learning%20Methods%20in%20Seizure%20Prediction%20and%20Opportunities%20for%20Neurologists%20in%20this%20Field&rft.jtitle=Neuroscience&rft.au=Maimaiti,%20Buajieerguli&rft.date=2022-01-15&rft.volume=481&rft.spage=197&rft.epage=218&rft.pages=197-218&rft.issn=0306-4522&rft.eissn=1873-7544&rft_id=info:doi/10.1016/j.neuroscience.2021.11.017&rft_dat=%3Cproquest_cross%3E2599184441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599184441&rft_id=info:pmid/34793938&rft_els_id=S0306452221005765&rfr_iscdi=true |