Multi-Task Fusion for Improving Mammography Screening Data Classification

Machine learning and deep learning methods have become essential for computer-assisted prediction in medicine, with a growing number of applications also in the field of mammography. Typically these algorithms are trained for a specific task , e.g., the classification of lesions or the prediction of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2022-04, Vol.41 (4), p.937-950
Hauptverfasser: Wimmer, Maria, Sluiter, Gert, Major, David, Lenis, Dimitrios, Berg, Astrid, Neubauer, Theresa, Buhler, Katja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 950
container_issue 4
container_start_page 937
container_title IEEE transactions on medical imaging
container_volume 41
creator Wimmer, Maria
Sluiter, Gert
Major, David
Lenis, Dimitrios
Berg, Astrid
Neubauer, Theresa
Buhler, Katja
description Machine learning and deep learning methods have become essential for computer-assisted prediction in medicine, with a growing number of applications also in the field of mammography. Typically these algorithms are trained for a specific task , e.g., the classification of lesions or the prediction of a mammogram's pathology status. To obtain a comprehensive view of a patient, models which were all trained for the same task(s) are subsequently ensembled or combined. In this work, we propose a pipeline approach, where we first train a set of individual, task-specific models and subsequently investigate the fusion thereof, which is in contrast to the standard model ensembling strategy. We fuse model predictions and high-level features from deep learning models with hybrid patient models to build stronger predictors on patient level. To this end, we propose a multi-branch deep learning model which efficiently fuses features across different tasks and mammograms to obtain a comprehensive patient-level prediction. We train and evaluate our full pipeline on public mammography data, i.e., DDSM and its curated version CBIS-DDSM, and report an AUC score of 0.962 for predicting the presence of any lesion and 0.791 for predicting the presence of malignant lesions on patient level. Overall, our fusion approaches improve AUC scores significantly by up to 0.04 compared to standard model ensembling. Moreover, by providing not only global patient-level predictions but also task-specific model results that are related to radiological features, our pipeline aims to closely support the reading workflow of radiologists.
doi_str_mv 10.1109/TMI.2021.3129068
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2599070793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9618960</ieee_id><sourcerecordid>2599070793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-d37311773444410629bf3a3a548d175256da44d5b1ed7fcd996954c6ca435a6c3</originalsourceid><addsrcrecordid>eNpdkEtLAzEURoMotlb3giADbtxMzfuxlGp1oMWFFdyFNJOpo_OoyYzQf29KaxdmE0jOd-_HAeASwTFCUN0t5tkYQ4zGBGEFuTwCQ8SYTDGj78dgCLGQKYQcD8BZCJ8QIsqgOgUDQoWUGMkhyOZ91ZXpwoSvZNqHsm2SovVJVq99-1M2q2Ru6rpdebP-2CSv1jvXbF8fTGeSSWVCKIvSmi7mzsFJYargLvb3CLxNHxeT53T28pRN7mepjVu7NCeCICQEofGg2E0tC2KIYVTmSDDMeG4ozdkSuVwUNleKK0Ytt4YSZrglI3C7mxsbfvcudLoug3VVZRrX9kFjphQUUCgS0Zt_6Gfb-ya205hTpiSRlEYK7ijr2xC8K_Tal7XxG42g3mrWUbPeatZ7zTFyvR_cL2uXHwJ_XiNwtQNK59zhW3EkFYfkF_4qfyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645983844</pqid></control><display><type>article</type><title>Multi-Task Fusion for Improving Mammography Screening Data Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Wimmer, Maria ; Sluiter, Gert ; Major, David ; Lenis, Dimitrios ; Berg, Astrid ; Neubauer, Theresa ; Buhler, Katja</creator><creatorcontrib>Wimmer, Maria ; Sluiter, Gert ; Major, David ; Lenis, Dimitrios ; Berg, Astrid ; Neubauer, Theresa ; Buhler, Katja</creatorcontrib><description>Machine learning and deep learning methods have become essential for computer-assisted prediction in medicine, with a growing number of applications also in the field of mammography. Typically these algorithms are trained for a specific task , e.g., the classification of lesions or the prediction of a mammogram's pathology status. To obtain a comprehensive view of a patient, models which were all trained for the same task(s) are subsequently ensembled or combined. In this work, we propose a pipeline approach, where we first train a set of individual, task-specific models and subsequently investigate the fusion thereof, which is in contrast to the standard model ensembling strategy. We fuse model predictions and high-level features from deep learning models with hybrid patient models to build stronger predictors on patient level. To this end, we propose a multi-branch deep learning model which efficiently fuses features across different tasks and mammograms to obtain a comprehensive patient-level prediction. We train and evaluate our full pipeline on public mammography data, i.e., DDSM and its curated version CBIS-DDSM, and report an AUC score of 0.962 for predicting the presence of any lesion and 0.791 for predicting the presence of malignant lesions on patient level. Overall, our fusion approaches improve AUC scores significantly by up to 0.04 compared to standard model ensembling. Moreover, by providing not only global patient-level predictions but also task-specific model results that are related to radiological features, our pipeline aims to closely support the reading workflow of radiologists.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2021.3129068</identifier><identifier>PMID: 34788218</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Breast ; Breast cancer ; Breast Neoplasms - diagnostic imaging ; Cancer ; CBIS-DDSM ; Classification ; DDSM ; Deep learning ; Early Detection of Cancer ; Feature extraction ; Female ; Humans ; Lesions ; Machine Learning ; Mammography ; Mammography - methods ; model fusion ; Neural Networks, Computer ; Pipelines ; Predictions ; Predictive models ; Task analysis ; Workflow</subject><ispartof>IEEE transactions on medical imaging, 2022-04, Vol.41 (4), p.937-950</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-d37311773444410629bf3a3a548d175256da44d5b1ed7fcd996954c6ca435a6c3</citedby><cites>FETCH-LOGICAL-c347t-d37311773444410629bf3a3a548d175256da44d5b1ed7fcd996954c6ca435a6c3</cites><orcidid>0000-0002-2300-2661 ; 0000-0002-9091-3684 ; 0000-0003-2599-2395 ; 0000-0002-1563-7683 ; 0000-0002-5926-9317 ; 0000-0001-9056-5758 ; 0000-0002-0362-7998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9618960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9618960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34788218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wimmer, Maria</creatorcontrib><creatorcontrib>Sluiter, Gert</creatorcontrib><creatorcontrib>Major, David</creatorcontrib><creatorcontrib>Lenis, Dimitrios</creatorcontrib><creatorcontrib>Berg, Astrid</creatorcontrib><creatorcontrib>Neubauer, Theresa</creatorcontrib><creatorcontrib>Buhler, Katja</creatorcontrib><title>Multi-Task Fusion for Improving Mammography Screening Data Classification</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Machine learning and deep learning methods have become essential for computer-assisted prediction in medicine, with a growing number of applications also in the field of mammography. Typically these algorithms are trained for a specific task , e.g., the classification of lesions or the prediction of a mammogram's pathology status. To obtain a comprehensive view of a patient, models which were all trained for the same task(s) are subsequently ensembled or combined. In this work, we propose a pipeline approach, where we first train a set of individual, task-specific models and subsequently investigate the fusion thereof, which is in contrast to the standard model ensembling strategy. We fuse model predictions and high-level features from deep learning models with hybrid patient models to build stronger predictors on patient level. To this end, we propose a multi-branch deep learning model which efficiently fuses features across different tasks and mammograms to obtain a comprehensive patient-level prediction. We train and evaluate our full pipeline on public mammography data, i.e., DDSM and its curated version CBIS-DDSM, and report an AUC score of 0.962 for predicting the presence of any lesion and 0.791 for predicting the presence of malignant lesions on patient level. Overall, our fusion approaches improve AUC scores significantly by up to 0.04 compared to standard model ensembling. Moreover, by providing not only global patient-level predictions but also task-specific model results that are related to radiological features, our pipeline aims to closely support the reading workflow of radiologists.</description><subject>Algorithms</subject><subject>Breast</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Cancer</subject><subject>CBIS-DDSM</subject><subject>Classification</subject><subject>DDSM</subject><subject>Deep learning</subject><subject>Early Detection of Cancer</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Humans</subject><subject>Lesions</subject><subject>Machine Learning</subject><subject>Mammography</subject><subject>Mammography - methods</subject><subject>model fusion</subject><subject>Neural Networks, Computer</subject><subject>Pipelines</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Task analysis</subject><subject>Workflow</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtLAzEURoMotlb3giADbtxMzfuxlGp1oMWFFdyFNJOpo_OoyYzQf29KaxdmE0jOd-_HAeASwTFCUN0t5tkYQ4zGBGEFuTwCQ8SYTDGj78dgCLGQKYQcD8BZCJ8QIsqgOgUDQoWUGMkhyOZ91ZXpwoSvZNqHsm2SovVJVq99-1M2q2Ru6rpdebP-2CSv1jvXbF8fTGeSSWVCKIvSmi7mzsFJYargLvb3CLxNHxeT53T28pRN7mepjVu7NCeCICQEofGg2E0tC2KIYVTmSDDMeG4ozdkSuVwUNleKK0Ytt4YSZrglI3C7mxsbfvcudLoug3VVZRrX9kFjphQUUCgS0Zt_6Gfb-ya205hTpiSRlEYK7ijr2xC8K_Tal7XxG42g3mrWUbPeatZ7zTFyvR_cL2uXHwJ_XiNwtQNK59zhW3EkFYfkF_4qfyU</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Wimmer, Maria</creator><creator>Sluiter, Gert</creator><creator>Major, David</creator><creator>Lenis, Dimitrios</creator><creator>Berg, Astrid</creator><creator>Neubauer, Theresa</creator><creator>Buhler, Katja</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2300-2661</orcidid><orcidid>https://orcid.org/0000-0002-9091-3684</orcidid><orcidid>https://orcid.org/0000-0003-2599-2395</orcidid><orcidid>https://orcid.org/0000-0002-1563-7683</orcidid><orcidid>https://orcid.org/0000-0002-5926-9317</orcidid><orcidid>https://orcid.org/0000-0001-9056-5758</orcidid><orcidid>https://orcid.org/0000-0002-0362-7998</orcidid></search><sort><creationdate>20220401</creationdate><title>Multi-Task Fusion for Improving Mammography Screening Data Classification</title><author>Wimmer, Maria ; Sluiter, Gert ; Major, David ; Lenis, Dimitrios ; Berg, Astrid ; Neubauer, Theresa ; Buhler, Katja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-d37311773444410629bf3a3a548d175256da44d5b1ed7fcd996954c6ca435a6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Breast</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Cancer</topic><topic>CBIS-DDSM</topic><topic>Classification</topic><topic>DDSM</topic><topic>Deep learning</topic><topic>Early Detection of Cancer</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Humans</topic><topic>Lesions</topic><topic>Machine Learning</topic><topic>Mammography</topic><topic>Mammography - methods</topic><topic>model fusion</topic><topic>Neural Networks, Computer</topic><topic>Pipelines</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Task analysis</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Wimmer, Maria</creatorcontrib><creatorcontrib>Sluiter, Gert</creatorcontrib><creatorcontrib>Major, David</creatorcontrib><creatorcontrib>Lenis, Dimitrios</creatorcontrib><creatorcontrib>Berg, Astrid</creatorcontrib><creatorcontrib>Neubauer, Theresa</creatorcontrib><creatorcontrib>Buhler, Katja</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wimmer, Maria</au><au>Sluiter, Gert</au><au>Major, David</au><au>Lenis, Dimitrios</au><au>Berg, Astrid</au><au>Neubauer, Theresa</au><au>Buhler, Katja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Task Fusion for Improving Mammography Screening Data Classification</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>41</volume><issue>4</issue><spage>937</spage><epage>950</epage><pages>937-950</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Machine learning and deep learning methods have become essential for computer-assisted prediction in medicine, with a growing number of applications also in the field of mammography. Typically these algorithms are trained for a specific task , e.g., the classification of lesions or the prediction of a mammogram's pathology status. To obtain a comprehensive view of a patient, models which were all trained for the same task(s) are subsequently ensembled or combined. In this work, we propose a pipeline approach, where we first train a set of individual, task-specific models and subsequently investigate the fusion thereof, which is in contrast to the standard model ensembling strategy. We fuse model predictions and high-level features from deep learning models with hybrid patient models to build stronger predictors on patient level. To this end, we propose a multi-branch deep learning model which efficiently fuses features across different tasks and mammograms to obtain a comprehensive patient-level prediction. We train and evaluate our full pipeline on public mammography data, i.e., DDSM and its curated version CBIS-DDSM, and report an AUC score of 0.962 for predicting the presence of any lesion and 0.791 for predicting the presence of malignant lesions on patient level. Overall, our fusion approaches improve AUC scores significantly by up to 0.04 compared to standard model ensembling. Moreover, by providing not only global patient-level predictions but also task-specific model results that are related to radiological features, our pipeline aims to closely support the reading workflow of radiologists.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34788218</pmid><doi>10.1109/TMI.2021.3129068</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2300-2661</orcidid><orcidid>https://orcid.org/0000-0002-9091-3684</orcidid><orcidid>https://orcid.org/0000-0003-2599-2395</orcidid><orcidid>https://orcid.org/0000-0002-1563-7683</orcidid><orcidid>https://orcid.org/0000-0002-5926-9317</orcidid><orcidid>https://orcid.org/0000-0001-9056-5758</orcidid><orcidid>https://orcid.org/0000-0002-0362-7998</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2022-04, Vol.41 (4), p.937-950
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_2599070793
source IEEE Electronic Library (IEL)
subjects Algorithms
Breast
Breast cancer
Breast Neoplasms - diagnostic imaging
Cancer
CBIS-DDSM
Classification
DDSM
Deep learning
Early Detection of Cancer
Feature extraction
Female
Humans
Lesions
Machine Learning
Mammography
Mammography - methods
model fusion
Neural Networks, Computer
Pipelines
Predictions
Predictive models
Task analysis
Workflow
title Multi-Task Fusion for Improving Mammography Screening Data Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Task%20Fusion%20for%20Improving%20Mammography%20Screening%20Data%20Classification&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Wimmer,%20Maria&rft.date=2022-04-01&rft.volume=41&rft.issue=4&rft.spage=937&rft.epage=950&rft.pages=937-950&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2021.3129068&rft_dat=%3Cproquest_RIE%3E2599070793%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645983844&rft_id=info:pmid/34788218&rft_ieee_id=9618960&rfr_iscdi=true