Permeability and Osmotic Parameters of Human Umbilical Vein Endothelial Cells and H9C2 Cells under Non-ideal Thermodynamic Assumptions: A Novel Iterative Fitting Method

Cryopreservation is the use of very low subzero temperatures to preserve cells and tissues for later use. This is achieved by controlled cooling in the presence of cryoprotectants that moderate the amount of ice formed. Mathematical modeling of the cryopreservation process is a useful tool to invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2021-12, Vol.125 (47), p.12934-12946
Hauptverfasser: Gabler Pizarro, Laura A., McGann, Locksley E., Elliott, Janet A. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12946
container_issue 47
container_start_page 12934
container_title The journal of physical chemistry. B
container_volume 125
creator Gabler Pizarro, Laura A.
McGann, Locksley E.
Elliott, Janet A. W.
description Cryopreservation is the use of very low subzero temperatures to preserve cells and tissues for later use. This is achieved by controlled cooling in the presence of cryoprotectants that moderate the amount of ice formed. Mathematical modeling of the cryopreservation process is a useful tool to investigate the different variables that affect the results of this process. The changing cell volume during cryopreservation can be modeled using cell membrane water and cryoprotectant permeabilities and the osmotically inactive fraction of the intracellular contents. These three cell-specific parameters have been found previously for different cell types under ideal and dilute assumptions, but biological solutions at subzero temperatures are far from ideal and dilute, especially when cryoprotectants are included. In this work, the osmotic virial equation is used to model the changing cell volume under non-ideal assumptions, and the intracellular environment is described using the grouped solute, which consists of all impermeant intracellular solutes grouped together, leading to two additional cell-specific parameters, the second and third osmotic virial coefficients of the grouped solute. Herein, we present a novel fitting method to efficiently determine these five cell-specific parameters by fitting kinetic cell volume data under non-ideal assumptions and report the results of applying this method to obtain the parameters for two cell types: human umbilical vein endothelial cells and H9C2 rat myoblasts.
doi_str_mv 10.1021/acs.jpcb.1c06637
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2599070740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599070740</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-4116b04e494ca1e2fc26743173507ba4cc7c47b83c8921dd5a3bbaa32d7522733</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EoqVlzwp5yYIM_kucsBuN2k6l0nbRso0c-w7jKrYH26k0b8Rj1tMJ7FhY9rW-c46uDkKfKFlQwug3pdPiaaeHBdWkabh8g05pzUhVjnw7vxtKmhP0IaUnQljN2uY9OuFCtm3Nm1P05x6iAzXY0eY9Vt7gu-RCthrfq6gcZIgJhw1eT055_OgOoFYj_gnW4wtvQt7CaMvHCsYxvRqsuxWbx8kbiPg2-MoaKNDDtqQFs_fKlYRlSpPbZRt8-o6XBXuGEV-XRJXtM-BLm7P1v_APyNtgztG7jRoTfJzvM_R4efGwWlc3d1fXq-VNpbhscyUobQYiQHRCKwpso1kjBaeS10QOSmgttZBDy3XbMWpMrfgwKMWZkTVjkvMz9OXou4vh9wQp984mXbZRHsKUelZ3HZFEClJQckR1DClF2PS7aJ2K-56S_tBPX_rpD_30cz9F8nl2nwYH5p_gbyEF-HoEXqVhir4s-3-_F_Vxnag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599070740</pqid></control><display><type>article</type><title>Permeability and Osmotic Parameters of Human Umbilical Vein Endothelial Cells and H9C2 Cells under Non-ideal Thermodynamic Assumptions: A Novel Iterative Fitting Method</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Gabler Pizarro, Laura A. ; McGann, Locksley E. ; Elliott, Janet A. W.</creator><creatorcontrib>Gabler Pizarro, Laura A. ; McGann, Locksley E. ; Elliott, Janet A. W.</creatorcontrib><description>Cryopreservation is the use of very low subzero temperatures to preserve cells and tissues for later use. This is achieved by controlled cooling in the presence of cryoprotectants that moderate the amount of ice formed. Mathematical modeling of the cryopreservation process is a useful tool to investigate the different variables that affect the results of this process. The changing cell volume during cryopreservation can be modeled using cell membrane water and cryoprotectant permeabilities and the osmotically inactive fraction of the intracellular contents. These three cell-specific parameters have been found previously for different cell types under ideal and dilute assumptions, but biological solutions at subzero temperatures are far from ideal and dilute, especially when cryoprotectants are included. In this work, the osmotic virial equation is used to model the changing cell volume under non-ideal assumptions, and the intracellular environment is described using the grouped solute, which consists of all impermeant intracellular solutes grouped together, leading to two additional cell-specific parameters, the second and third osmotic virial coefficients of the grouped solute. Herein, we present a novel fitting method to efficiently determine these five cell-specific parameters by fitting kinetic cell volume data under non-ideal assumptions and report the results of applying this method to obtain the parameters for two cell types: human umbilical vein endothelial cells and H9C2 rat myoblasts.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.1c06637</identifier><identifier>PMID: 34788536</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; B: Biophysical and Biochemical Systems and Processes ; Cell Membrane Permeability ; Cryopreservation ; Cryoprotective Agents ; Human Umbilical Vein Endothelial Cells ; Humans ; Osmosis ; Rats ; Thermodynamics</subject><ispartof>The journal of physical chemistry. B, 2021-12, Vol.125 (47), p.12934-12946</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-4116b04e494ca1e2fc26743173507ba4cc7c47b83c8921dd5a3bbaa32d7522733</citedby><cites>FETCH-LOGICAL-a378t-4116b04e494ca1e2fc26743173507ba4cc7c47b83c8921dd5a3bbaa32d7522733</cites><orcidid>0000-0002-7883-3243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.1c06637$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.1c06637$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34788536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gabler Pizarro, Laura A.</creatorcontrib><creatorcontrib>McGann, Locksley E.</creatorcontrib><creatorcontrib>Elliott, Janet A. W.</creatorcontrib><title>Permeability and Osmotic Parameters of Human Umbilical Vein Endothelial Cells and H9C2 Cells under Non-ideal Thermodynamic Assumptions: A Novel Iterative Fitting Method</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Cryopreservation is the use of very low subzero temperatures to preserve cells and tissues for later use. This is achieved by controlled cooling in the presence of cryoprotectants that moderate the amount of ice formed. Mathematical modeling of the cryopreservation process is a useful tool to investigate the different variables that affect the results of this process. The changing cell volume during cryopreservation can be modeled using cell membrane water and cryoprotectant permeabilities and the osmotically inactive fraction of the intracellular contents. These three cell-specific parameters have been found previously for different cell types under ideal and dilute assumptions, but biological solutions at subzero temperatures are far from ideal and dilute, especially when cryoprotectants are included. In this work, the osmotic virial equation is used to model the changing cell volume under non-ideal assumptions, and the intracellular environment is described using the grouped solute, which consists of all impermeant intracellular solutes grouped together, leading to two additional cell-specific parameters, the second and third osmotic virial coefficients of the grouped solute. Herein, we present a novel fitting method to efficiently determine these five cell-specific parameters by fitting kinetic cell volume data under non-ideal assumptions and report the results of applying this method to obtain the parameters for two cell types: human umbilical vein endothelial cells and H9C2 rat myoblasts.</description><subject>Animals</subject><subject>B: Biophysical and Biochemical Systems and Processes</subject><subject>Cell Membrane Permeability</subject><subject>Cryopreservation</subject><subject>Cryoprotective Agents</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Osmosis</subject><subject>Rats</subject><subject>Thermodynamics</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAUhS0EoqVlzwp5yYIM_kucsBuN2k6l0nbRso0c-w7jKrYH26k0b8Rj1tMJ7FhY9rW-c46uDkKfKFlQwug3pdPiaaeHBdWkabh8g05pzUhVjnw7vxtKmhP0IaUnQljN2uY9OuFCtm3Nm1P05x6iAzXY0eY9Vt7gu-RCthrfq6gcZIgJhw1eT055_OgOoFYj_gnW4wtvQt7CaMvHCsYxvRqsuxWbx8kbiPg2-MoaKNDDtqQFs_fKlYRlSpPbZRt8-o6XBXuGEV-XRJXtM-BLm7P1v_APyNtgztG7jRoTfJzvM_R4efGwWlc3d1fXq-VNpbhscyUobQYiQHRCKwpso1kjBaeS10QOSmgttZBDy3XbMWpMrfgwKMWZkTVjkvMz9OXou4vh9wQp984mXbZRHsKUelZ3HZFEClJQckR1DClF2PS7aJ2K-56S_tBPX_rpD_30cz9F8nl2nwYH5p_gbyEF-HoEXqVhir4s-3-_F_Vxnag</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Gabler Pizarro, Laura A.</creator><creator>McGann, Locksley E.</creator><creator>Elliott, Janet A. W.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7883-3243</orcidid></search><sort><creationdate>20211202</creationdate><title>Permeability and Osmotic Parameters of Human Umbilical Vein Endothelial Cells and H9C2 Cells under Non-ideal Thermodynamic Assumptions: A Novel Iterative Fitting Method</title><author>Gabler Pizarro, Laura A. ; McGann, Locksley E. ; Elliott, Janet A. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-4116b04e494ca1e2fc26743173507ba4cc7c47b83c8921dd5a3bbaa32d7522733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>B: Biophysical and Biochemical Systems and Processes</topic><topic>Cell Membrane Permeability</topic><topic>Cryopreservation</topic><topic>Cryoprotective Agents</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Osmosis</topic><topic>Rats</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gabler Pizarro, Laura A.</creatorcontrib><creatorcontrib>McGann, Locksley E.</creatorcontrib><creatorcontrib>Elliott, Janet A. W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabler Pizarro, Laura A.</au><au>McGann, Locksley E.</au><au>Elliott, Janet A. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permeability and Osmotic Parameters of Human Umbilical Vein Endothelial Cells and H9C2 Cells under Non-ideal Thermodynamic Assumptions: A Novel Iterative Fitting Method</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2021-12-02</date><risdate>2021</risdate><volume>125</volume><issue>47</issue><spage>12934</spage><epage>12946</epage><pages>12934-12946</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Cryopreservation is the use of very low subzero temperatures to preserve cells and tissues for later use. This is achieved by controlled cooling in the presence of cryoprotectants that moderate the amount of ice formed. Mathematical modeling of the cryopreservation process is a useful tool to investigate the different variables that affect the results of this process. The changing cell volume during cryopreservation can be modeled using cell membrane water and cryoprotectant permeabilities and the osmotically inactive fraction of the intracellular contents. These three cell-specific parameters have been found previously for different cell types under ideal and dilute assumptions, but biological solutions at subzero temperatures are far from ideal and dilute, especially when cryoprotectants are included. In this work, the osmotic virial equation is used to model the changing cell volume under non-ideal assumptions, and the intracellular environment is described using the grouped solute, which consists of all impermeant intracellular solutes grouped together, leading to two additional cell-specific parameters, the second and third osmotic virial coefficients of the grouped solute. Herein, we present a novel fitting method to efficiently determine these five cell-specific parameters by fitting kinetic cell volume data under non-ideal assumptions and report the results of applying this method to obtain the parameters for two cell types: human umbilical vein endothelial cells and H9C2 rat myoblasts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34788536</pmid><doi>10.1021/acs.jpcb.1c06637</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7883-3243</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2021-12, Vol.125 (47), p.12934-12946
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2599070740
source MEDLINE; American Chemical Society Journals
subjects Animals
B: Biophysical and Biochemical Systems and Processes
Cell Membrane Permeability
Cryopreservation
Cryoprotective Agents
Human Umbilical Vein Endothelial Cells
Humans
Osmosis
Rats
Thermodynamics
title Permeability and Osmotic Parameters of Human Umbilical Vein Endothelial Cells and H9C2 Cells under Non-ideal Thermodynamic Assumptions: A Novel Iterative Fitting Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permeability%20and%20Osmotic%20Parameters%20of%20Human%20Umbilical%20Vein%20Endothelial%20Cells%20and%20H9C2%20Cells%20under%20Non-ideal%20Thermodynamic%20Assumptions:%20A%20Novel%20Iterative%20Fitting%20Method&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Gabler%20Pizarro,%20Laura%20A.&rft.date=2021-12-02&rft.volume=125&rft.issue=47&rft.spage=12934&rft.epage=12946&rft.pages=12934-12946&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.1c06637&rft_dat=%3Cproquest_cross%3E2599070740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599070740&rft_id=info:pmid/34788536&rfr_iscdi=true