A Particle-Based COVID-19 Simulator With Contact Tracing and Testing
Goal: The COVID-19 pandemic has emerged as the most severe public health crisis in over a century. As of January 2021, there are more than 100 million cases and 2.1 million deaths. For informed decision making, reliable statistical data and capable simulation tools are needed. Our goal is to develop...
Gespeichert in:
Veröffentlicht in: | IEEE open journal of engineering in medicine and biology 2021, Vol.2, p.111-117 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | |
container_start_page | 111 |
container_title | IEEE open journal of engineering in medicine and biology |
container_volume | 2 |
creator | Kuzdeuov, Askat Karabay, Aknur Baimukashev, Daulet Ibragimov, Bauyrzhan Varol, Huseyin Atakan |
description | Goal: The COVID-19 pandemic has emerged as the most severe public health crisis in over a century. As of January 2021, there are more than 100 million cases and 2.1 million deaths. For informed decision making, reliable statistical data and capable simulation tools are needed. Our goal is to develop an epidemic simulator that can model the effects of random population testing and contact tracing. Methods: Our simulator models individuals as particles with the position, velocity, and epidemic status states on a 2D map and runs an SEIR epidemic model with contact tracing and testing modules. The simulator is available on GitHub under the MIT license. Results: The results show that the synergistic use of contact tracing and massive testing is effective in suppressing the epidemic (the number of deaths was reduced by 72%). Conclusions: The Particle-based COVID-19 simulator enables the modeling of intervention measures, random testing, and contact tracing, for epidemic mitigation and suppression. |
doi_str_mv | 10.1109/OJEMB.2021.3064506 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2598537716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9372866</ieee_id><doaj_id>oai_doaj_org_article_1d12e987ed154e3fa9730b00e53d78b1</doaj_id><sourcerecordid>2531562524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4086-a2a13257c433fe5354ff4eec256426c3cd2ccf5faf3715e8f444eafcb74c7e1f3</originalsourceid><addsrcrecordid>eNpdkc1uEzEUhS0EolXpC8BmJDZsJvj6fzZIbdpCUFGQCLC0HM916mgybj0zSLx93SaqKCtf2ed8ts8h5C3QGQBtPi6_Xn47nzHKYMapEpKqF-SYKSFqYFq9_Gc-IqfDsKWUMgkAzLwmR1xoo6RsjsnFWfXd5TH6DutzN2BbzZe_Fhc1NNWPuJs6N6Zc_Y7jTTVP_ej8WK2y87HfVK5vqxUOY5nfkFfBdQOeHtYT8vPqcjX_Ul8vPy_mZ9e1F9So2jEHnEntBecBJZciBIHomVSCKc99y7wPMrjANUg0QQiBLvi1Fl4jBH5CFntum9zW3ua4c_mvTS7ax42UN_bwFwstMGyMxhakQB5cozldU1qubbVZQ2F92rNup_UOW4_9mF33DPr8pI83dpP-WCNL2JwXwIcDIKe7qQRhd3Hw2HWuxzQNlsnGSK41qCJ9_590m6bcl6iKioNUTDJRVGyv8jkNQ8bw9Big9qFz-9i5fejcHjovpnd7U0TEJ0PDNTNK8XsPVqQd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531562524</pqid></control><display><type>article</type><title>A Particle-Based COVID-19 Simulator With Contact Tracing and Testing</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kuzdeuov, Askat ; Karabay, Aknur ; Baimukashev, Daulet ; Ibragimov, Bauyrzhan ; Varol, Huseyin Atakan</creator><creatorcontrib>Kuzdeuov, Askat ; Karabay, Aknur ; Baimukashev, Daulet ; Ibragimov, Bauyrzhan ; Varol, Huseyin Atakan</creatorcontrib><description>Goal: The COVID-19 pandemic has emerged as the most severe public health crisis in over a century. As of January 2021, there are more than 100 million cases and 2.1 million deaths. For informed decision making, reliable statistical data and capable simulation tools are needed. Our goal is to develop an epidemic simulator that can model the effects of random population testing and contact tracing. Methods: Our simulator models individuals as particles with the position, velocity, and epidemic status states on a 2D map and runs an SEIR epidemic model with contact tracing and testing modules. The simulator is available on GitHub under the MIT license. Results: The results show that the synergistic use of contact tracing and massive testing is effective in suppressing the epidemic (the number of deaths was reduced by 72%). Conclusions: The Particle-based COVID-19 simulator enables the modeling of intervention measures, random testing, and contact tracing, for epidemic mitigation and suppression.</description><identifier>ISSN: 2644-1276</identifier><identifier>EISSN: 2644-1276</identifier><identifier>DOI: 10.1109/OJEMB.2021.3064506</identifier><identifier>PMID: 34786559</identifier><identifier>CODEN: IOJEA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological system modeling ; Contact ; Contact tracing ; Coronaviruses ; COVID-19 ; Decision making ; Epidemic models ; epidemic simulator ; Epidemics ; Fatalities ; Mitigation ; Pandemics ; Particle measurements ; particle-based simulation ; Public health ; random testing ; Simulation ; Sociology ; Statistics ; Testing ; Two dimensional models</subject><ispartof>IEEE open journal of engineering in medicine and biology, 2021, Vol.2, p.111-117</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>2021 Author</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4086-a2a13257c433fe5354ff4eec256426c3cd2ccf5faf3715e8f444eafcb74c7e1f3</citedby><cites>FETCH-LOGICAL-c4086-a2a13257c433fe5354ff4eec256426c3cd2ccf5faf3715e8f444eafcb74c7e1f3</cites><orcidid>0000-0002-1432-8205 ; 0000-0001-6169-8252 ; 0000-0002-4042-425X ; 0000-0003-1546-7255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545033/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9372866$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,4024,27633,27923,27924,27925,53791,53793,54933</link.rule.ids></links><search><creatorcontrib>Kuzdeuov, Askat</creatorcontrib><creatorcontrib>Karabay, Aknur</creatorcontrib><creatorcontrib>Baimukashev, Daulet</creatorcontrib><creatorcontrib>Ibragimov, Bauyrzhan</creatorcontrib><creatorcontrib>Varol, Huseyin Atakan</creatorcontrib><title>A Particle-Based COVID-19 Simulator With Contact Tracing and Testing</title><title>IEEE open journal of engineering in medicine and biology</title><addtitle>OJEMB</addtitle><description>Goal: The COVID-19 pandemic has emerged as the most severe public health crisis in over a century. As of January 2021, there are more than 100 million cases and 2.1 million deaths. For informed decision making, reliable statistical data and capable simulation tools are needed. Our goal is to develop an epidemic simulator that can model the effects of random population testing and contact tracing. Methods: Our simulator models individuals as particles with the position, velocity, and epidemic status states on a 2D map and runs an SEIR epidemic model with contact tracing and testing modules. The simulator is available on GitHub under the MIT license. Results: The results show that the synergistic use of contact tracing and massive testing is effective in suppressing the epidemic (the number of deaths was reduced by 72%). Conclusions: The Particle-based COVID-19 simulator enables the modeling of intervention measures, random testing, and contact tracing, for epidemic mitigation and suppression.</description><subject>Biological system modeling</subject><subject>Contact</subject><subject>Contact tracing</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Decision making</subject><subject>Epidemic models</subject><subject>epidemic simulator</subject><subject>Epidemics</subject><subject>Fatalities</subject><subject>Mitigation</subject><subject>Pandemics</subject><subject>Particle measurements</subject><subject>particle-based simulation</subject><subject>Public health</subject><subject>random testing</subject><subject>Simulation</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Testing</subject><subject>Two dimensional models</subject><issn>2644-1276</issn><issn>2644-1276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1uEzEUhS0EolXpC8BmJDZsJvj6fzZIbdpCUFGQCLC0HM916mgybj0zSLx93SaqKCtf2ed8ts8h5C3QGQBtPi6_Xn47nzHKYMapEpKqF-SYKSFqYFq9_Gc-IqfDsKWUMgkAzLwmR1xoo6RsjsnFWfXd5TH6DutzN2BbzZe_Fhc1NNWPuJs6N6Zc_Y7jTTVP_ej8WK2y87HfVK5vqxUOY5nfkFfBdQOeHtYT8vPqcjX_Ul8vPy_mZ9e1F9So2jEHnEntBecBJZciBIHomVSCKc99y7wPMrjANUg0QQiBLvi1Fl4jBH5CFntum9zW3ua4c_mvTS7ax42UN_bwFwstMGyMxhakQB5cozldU1qubbVZQ2F92rNup_UOW4_9mF33DPr8pI83dpP-WCNL2JwXwIcDIKe7qQRhd3Hw2HWuxzQNlsnGSK41qCJ9_590m6bcl6iKioNUTDJRVGyv8jkNQ8bw9Big9qFz-9i5fejcHjovpnd7U0TEJ0PDNTNK8XsPVqQd</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Kuzdeuov, Askat</creator><creator>Karabay, Aknur</creator><creator>Baimukashev, Daulet</creator><creator>Ibragimov, Bauyrzhan</creator><creator>Varol, Huseyin Atakan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1432-8205</orcidid><orcidid>https://orcid.org/0000-0001-6169-8252</orcidid><orcidid>https://orcid.org/0000-0002-4042-425X</orcidid><orcidid>https://orcid.org/0000-0003-1546-7255</orcidid></search><sort><creationdate>2021</creationdate><title>A Particle-Based COVID-19 Simulator With Contact Tracing and Testing</title><author>Kuzdeuov, Askat ; Karabay, Aknur ; Baimukashev, Daulet ; Ibragimov, Bauyrzhan ; Varol, Huseyin Atakan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4086-a2a13257c433fe5354ff4eec256426c3cd2ccf5faf3715e8f444eafcb74c7e1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological system modeling</topic><topic>Contact</topic><topic>Contact tracing</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Decision making</topic><topic>Epidemic models</topic><topic>epidemic simulator</topic><topic>Epidemics</topic><topic>Fatalities</topic><topic>Mitigation</topic><topic>Pandemics</topic><topic>Particle measurements</topic><topic>particle-based simulation</topic><topic>Public health</topic><topic>random testing</topic><topic>Simulation</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Testing</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuzdeuov, Askat</creatorcontrib><creatorcontrib>Karabay, Aknur</creatorcontrib><creatorcontrib>Baimukashev, Daulet</creatorcontrib><creatorcontrib>Ibragimov, Bauyrzhan</creatorcontrib><creatorcontrib>Varol, Huseyin Atakan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of engineering in medicine and biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuzdeuov, Askat</au><au>Karabay, Aknur</au><au>Baimukashev, Daulet</au><au>Ibragimov, Bauyrzhan</au><au>Varol, Huseyin Atakan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Particle-Based COVID-19 Simulator With Contact Tracing and Testing</atitle><jtitle>IEEE open journal of engineering in medicine and biology</jtitle><stitle>OJEMB</stitle><date>2021</date><risdate>2021</risdate><volume>2</volume><spage>111</spage><epage>117</epage><pages>111-117</pages><issn>2644-1276</issn><eissn>2644-1276</eissn><coden>IOJEA7</coden><abstract>Goal: The COVID-19 pandemic has emerged as the most severe public health crisis in over a century. As of January 2021, there are more than 100 million cases and 2.1 million deaths. For informed decision making, reliable statistical data and capable simulation tools are needed. Our goal is to develop an epidemic simulator that can model the effects of random population testing and contact tracing. Methods: Our simulator models individuals as particles with the position, velocity, and epidemic status states on a 2D map and runs an SEIR epidemic model with contact tracing and testing modules. The simulator is available on GitHub under the MIT license. Results: The results show that the synergistic use of contact tracing and massive testing is effective in suppressing the epidemic (the number of deaths was reduced by 72%). Conclusions: The Particle-based COVID-19 simulator enables the modeling of intervention measures, random testing, and contact tracing, for epidemic mitigation and suppression.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34786559</pmid><doi>10.1109/OJEMB.2021.3064506</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1432-8205</orcidid><orcidid>https://orcid.org/0000-0001-6169-8252</orcidid><orcidid>https://orcid.org/0000-0002-4042-425X</orcidid><orcidid>https://orcid.org/0000-0003-1546-7255</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2644-1276 |
ispartof | IEEE open journal of engineering in medicine and biology, 2021, Vol.2, p.111-117 |
issn | 2644-1276 2644-1276 |
language | eng |
recordid | cdi_proquest_miscellaneous_2598537716 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biological system modeling Contact Contact tracing Coronaviruses COVID-19 Decision making Epidemic models epidemic simulator Epidemics Fatalities Mitigation Pandemics Particle measurements particle-based simulation Public health random testing Simulation Sociology Statistics Testing Two dimensional models |
title | A Particle-Based COVID-19 Simulator With Contact Tracing and Testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Particle-Based%20COVID-19%20Simulator%20With%20Contact%20Tracing%20and%20Testing&rft.jtitle=IEEE%20open%20journal%20of%20engineering%20in%20medicine%20and%20biology&rft.au=Kuzdeuov,%20Askat&rft.date=2021&rft.volume=2&rft.spage=111&rft.epage=117&rft.pages=111-117&rft.issn=2644-1276&rft.eissn=2644-1276&rft.coden=IOJEA7&rft_id=info:doi/10.1109/OJEMB.2021.3064506&rft_dat=%3Cproquest_pubme%3E2531562524%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531562524&rft_id=info:pmid/34786559&rft_ieee_id=9372866&rft_doaj_id=oai_doaj_org_article_1d12e987ed154e3fa9730b00e53d78b1&rfr_iscdi=true |