Parametrization of Nonbonded Force Field Terms for Metal–Organic Frameworks Using Machine Learning Approach

The enormous structural and chemical diversity of metal–organic frameworks (MOFs) forces researchers to actively use simulation techniques as often as experiments. MOFs are widely known for their outstanding adsorption properties, so a precise description of the host–guest interactions is essential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2021-12, Vol.61 (12), p.5774-5784
Hauptverfasser: Korolev, Vadim V, Nevolin, Yuriy M, Manz, Thomas A, Protsenko, Pavel V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5784
container_issue 12
container_start_page 5774
container_title Journal of chemical information and modeling
container_volume 61
creator Korolev, Vadim V
Nevolin, Yuriy M
Manz, Thomas A
Protsenko, Pavel V
description The enormous structural and chemical diversity of metal–organic frameworks (MOFs) forces researchers to actively use simulation techniques as often as experiments. MOFs are widely known for their outstanding adsorption properties, so a precise description of the host–guest interactions is essential for high-throughput screening aimed at ranking the most promising candidates. However, highly accurate ab initio calculations cannot be routinely applied to model thousands of structures due to the demanding computational costs. Furthermore, methods based on force field (FF) parametrization suffer from low transferability. To resolve this accuracy–efficiency dilemma, we applied a machine learning (ML) approach: extreme gradient boosting. The trained models reproduced the atom-in-material quantities, including partial charges, polarizabilities, dispersion coefficients, quantum Drude oscillator, and electron cloud parameters, with accuracy similar to the reference data set. The aforementioned FF precursors make it possible to thoroughly describe noncovalent interactions typical for MOF–adsorbate systems: electrostatic, dispersion, polarization, and short-range repulsion. The presented approach can also readily facilitate hybrid atomistic simulation/ML workflows.
doi_str_mv 10.1021/acs.jcim.1c01124
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2598536876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598536876</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-931e6d1e4abd7c95fe1677f1e61971402c256b72a9f2a7d3ae91b9c1d051dfd03</originalsourceid><addsrcrecordid>eNp1kUFvEzEQhS0EoqVw54QsceFAgsfeteNjVRFASimHVuJmee3Z4rBrB3sjRE_9D_xDfgkOSTggcZrR0_feWH6EPAc2B8bhjXVlvnZhnINjALx5QE6hbfRMS_b54XFvtTwhT0pZMyaElvwxORGNWqhGsFMyfrLZjjjlcGenkCJNPf2YYpeiR0-XKTuky4CDp9eYx0L7lOklTnb4df_zKt_aGBxd7hK-p_y10JsS4i29tO5LiEhXaHPcCeebTU5VfEoe9XYo-Owwz8jN8u31xfvZ6urdh4vz1cwK2UwzLQClB2xs55XTbY8gleqrCFpBw7jjrewUt7rnVnlhUUOnHXjWgu89E2fk1T63nv22xTKZMRSHw2Ajpm0xvNWLVsiFkhV9-Q-6Ttsc6-sMl7BoKqpVpdiecjmVkrE3mxxGm38YYGZXhalVmF0V5lBFtbw4BG-7Ef1fw_HvK_B6D_yxHo_-N-831GiWRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618425997</pqid></control><display><type>article</type><title>Parametrization of Nonbonded Force Field Terms for Metal–Organic Frameworks Using Machine Learning Approach</title><source>ACS Publications</source><source>MEDLINE</source><creator>Korolev, Vadim V ; Nevolin, Yuriy M ; Manz, Thomas A ; Protsenko, Pavel V</creator><creatorcontrib>Korolev, Vadim V ; Nevolin, Yuriy M ; Manz, Thomas A ; Protsenko, Pavel V</creatorcontrib><description>The enormous structural and chemical diversity of metal–organic frameworks (MOFs) forces researchers to actively use simulation techniques as often as experiments. MOFs are widely known for their outstanding adsorption properties, so a precise description of the host–guest interactions is essential for high-throughput screening aimed at ranking the most promising candidates. However, highly accurate ab initio calculations cannot be routinely applied to model thousands of structures due to the demanding computational costs. Furthermore, methods based on force field (FF) parametrization suffer from low transferability. To resolve this accuracy–efficiency dilemma, we applied a machine learning (ML) approach: extreme gradient boosting. The trained models reproduced the atom-in-material quantities, including partial charges, polarizabilities, dispersion coefficients, quantum Drude oscillator, and electron cloud parameters, with accuracy similar to the reference data set. The aforementioned FF precursors make it possible to thoroughly describe noncovalent interactions typical for MOF–adsorbate systems: electrostatic, dispersion, polarization, and short-range repulsion. The presented approach can also readily facilitate hybrid atomistic simulation/ML workflows.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.1c01124</identifier><identifier>PMID: 34787430</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Accuracy ; Adsorbates ; Adsorption ; Dispersion ; Electron clouds ; Machine Learning ; Machine Learning and Deep Learning ; Metal-Organic Frameworks ; Parameterization ; Quantum Theory ; Static Electricity</subject><ispartof>Journal of chemical information and modeling, 2021-12, Vol.61 (12), p.5774-5784</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 27, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-931e6d1e4abd7c95fe1677f1e61971402c256b72a9f2a7d3ae91b9c1d051dfd03</citedby><cites>FETCH-LOGICAL-a364t-931e6d1e4abd7c95fe1677f1e61971402c256b72a9f2a7d3ae91b9c1d051dfd03</cites><orcidid>0000-0001-6117-5662 ; 0000-0002-1503-3679 ; 0000-0002-4033-9864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.1c01124$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.1c01124$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34787430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Korolev, Vadim V</creatorcontrib><creatorcontrib>Nevolin, Yuriy M</creatorcontrib><creatorcontrib>Manz, Thomas A</creatorcontrib><creatorcontrib>Protsenko, Pavel V</creatorcontrib><title>Parametrization of Nonbonded Force Field Terms for Metal–Organic Frameworks Using Machine Learning Approach</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>The enormous structural and chemical diversity of metal–organic frameworks (MOFs) forces researchers to actively use simulation techniques as often as experiments. MOFs are widely known for their outstanding adsorption properties, so a precise description of the host–guest interactions is essential for high-throughput screening aimed at ranking the most promising candidates. However, highly accurate ab initio calculations cannot be routinely applied to model thousands of structures due to the demanding computational costs. Furthermore, methods based on force field (FF) parametrization suffer from low transferability. To resolve this accuracy–efficiency dilemma, we applied a machine learning (ML) approach: extreme gradient boosting. The trained models reproduced the atom-in-material quantities, including partial charges, polarizabilities, dispersion coefficients, quantum Drude oscillator, and electron cloud parameters, with accuracy similar to the reference data set. The aforementioned FF precursors make it possible to thoroughly describe noncovalent interactions typical for MOF–adsorbate systems: electrostatic, dispersion, polarization, and short-range repulsion. The presented approach can also readily facilitate hybrid atomistic simulation/ML workflows.</description><subject>Accuracy</subject><subject>Adsorbates</subject><subject>Adsorption</subject><subject>Dispersion</subject><subject>Electron clouds</subject><subject>Machine Learning</subject><subject>Machine Learning and Deep Learning</subject><subject>Metal-Organic Frameworks</subject><subject>Parameterization</subject><subject>Quantum Theory</subject><subject>Static Electricity</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFvEzEQhS0EoqVw54QsceFAgsfeteNjVRFASimHVuJmee3Z4rBrB3sjRE_9D_xDfgkOSTggcZrR0_feWH6EPAc2B8bhjXVlvnZhnINjALx5QE6hbfRMS_b54XFvtTwhT0pZMyaElvwxORGNWqhGsFMyfrLZjjjlcGenkCJNPf2YYpeiR0-XKTuky4CDp9eYx0L7lOklTnb4df_zKt_aGBxd7hK-p_y10JsS4i29tO5LiEhXaHPcCeebTU5VfEoe9XYo-Owwz8jN8u31xfvZ6urdh4vz1cwK2UwzLQClB2xs55XTbY8gleqrCFpBw7jjrewUt7rnVnlhUUOnHXjWgu89E2fk1T63nv22xTKZMRSHw2Ajpm0xvNWLVsiFkhV9-Q-6Ttsc6-sMl7BoKqpVpdiecjmVkrE3mxxGm38YYGZXhalVmF0V5lBFtbw4BG-7Ef1fw_HvK_B6D_yxHo_-N-831GiWRg</recordid><startdate>20211227</startdate><enddate>20211227</enddate><creator>Korolev, Vadim V</creator><creator>Nevolin, Yuriy M</creator><creator>Manz, Thomas A</creator><creator>Protsenko, Pavel V</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6117-5662</orcidid><orcidid>https://orcid.org/0000-0002-1503-3679</orcidid><orcidid>https://orcid.org/0000-0002-4033-9864</orcidid></search><sort><creationdate>20211227</creationdate><title>Parametrization of Nonbonded Force Field Terms for Metal–Organic Frameworks Using Machine Learning Approach</title><author>Korolev, Vadim V ; Nevolin, Yuriy M ; Manz, Thomas A ; Protsenko, Pavel V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-931e6d1e4abd7c95fe1677f1e61971402c256b72a9f2a7d3ae91b9c1d051dfd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Adsorbates</topic><topic>Adsorption</topic><topic>Dispersion</topic><topic>Electron clouds</topic><topic>Machine Learning</topic><topic>Machine Learning and Deep Learning</topic><topic>Metal-Organic Frameworks</topic><topic>Parameterization</topic><topic>Quantum Theory</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korolev, Vadim V</creatorcontrib><creatorcontrib>Nevolin, Yuriy M</creatorcontrib><creatorcontrib>Manz, Thomas A</creatorcontrib><creatorcontrib>Protsenko, Pavel V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korolev, Vadim V</au><au>Nevolin, Yuriy M</au><au>Manz, Thomas A</au><au>Protsenko, Pavel V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametrization of Nonbonded Force Field Terms for Metal–Organic Frameworks Using Machine Learning Approach</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2021-12-27</date><risdate>2021</risdate><volume>61</volume><issue>12</issue><spage>5774</spage><epage>5784</epage><pages>5774-5784</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The enormous structural and chemical diversity of metal–organic frameworks (MOFs) forces researchers to actively use simulation techniques as often as experiments. MOFs are widely known for their outstanding adsorption properties, so a precise description of the host–guest interactions is essential for high-throughput screening aimed at ranking the most promising candidates. However, highly accurate ab initio calculations cannot be routinely applied to model thousands of structures due to the demanding computational costs. Furthermore, methods based on force field (FF) parametrization suffer from low transferability. To resolve this accuracy–efficiency dilemma, we applied a machine learning (ML) approach: extreme gradient boosting. The trained models reproduced the atom-in-material quantities, including partial charges, polarizabilities, dispersion coefficients, quantum Drude oscillator, and electron cloud parameters, with accuracy similar to the reference data set. The aforementioned FF precursors make it possible to thoroughly describe noncovalent interactions typical for MOF–adsorbate systems: electrostatic, dispersion, polarization, and short-range repulsion. The presented approach can also readily facilitate hybrid atomistic simulation/ML workflows.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34787430</pmid><doi>10.1021/acs.jcim.1c01124</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6117-5662</orcidid><orcidid>https://orcid.org/0000-0002-1503-3679</orcidid><orcidid>https://orcid.org/0000-0002-4033-9864</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2021-12, Vol.61 (12), p.5774-5784
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2598536876
source ACS Publications; MEDLINE
subjects Accuracy
Adsorbates
Adsorption
Dispersion
Electron clouds
Machine Learning
Machine Learning and Deep Learning
Metal-Organic Frameworks
Parameterization
Quantum Theory
Static Electricity
title Parametrization of Nonbonded Force Field Terms for Metal–Organic Frameworks Using Machine Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametrization%20of%20Nonbonded%20Force%20Field%20Terms%20for%20Metal%E2%80%93Organic%20Frameworks%20Using%20Machine%20Learning%20Approach&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Korolev,%20Vadim%20V&rft.date=2021-12-27&rft.volume=61&rft.issue=12&rft.spage=5774&rft.epage=5784&rft.pages=5774-5784&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.1c01124&rft_dat=%3Cproquest_cross%3E2598536876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618425997&rft_id=info:pmid/34787430&rfr_iscdi=true