Photo Rechargeable Li‐Ion Batteries Using Nanorod Heterostructure Electrodes

New ways of directly using solar energy to charge electrochemical energy storage devices such as batteries would lead to exciting developments in energy technologies. Here, a two‐electrode photo rechargeable Li‐ion battery is demonstrated using nanorod of type II semiconductor heterostructures with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-12, Vol.17 (51), p.e2105029-n/a
Hauptverfasser: Kumar, Amar, Thakur, Pallavi, Sharma, Rahul, Puthirath, Anand B., Ajayan, Pulickel M., Narayanan, Tharangattu N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 51
container_start_page e2105029
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 17
creator Kumar, Amar
Thakur, Pallavi
Sharma, Rahul
Puthirath, Anand B.
Ajayan, Pulickel M.
Narayanan, Tharangattu N.
description New ways of directly using solar energy to charge electrochemical energy storage devices such as batteries would lead to exciting developments in energy technologies. Here, a two‐electrode photo rechargeable Li‐ion battery is demonstrated using nanorod of type II semiconductor heterostructures with in‐plane domains of crystalline MoS2 and amorphous MoOx. The staggered energy band alignment of MoS2 and MoOx limits the electron holes recombination and causes holes to be retained in the Li intercalated MoS2 electrode. The holes generated in the MoS2 pushes the intercalated Li‐ions and hence charge the battery. Low band gap, high efficiency photo‐conversion and efficient electron–hole separation help the battery to fully charge within a few hours using solar light. The proposed concept and materials can enable next generation stable photo‐rechargeable battery electrodes, in contrast to the reported materials. The working (photo charging) of single nanorod (NR) containing a MoS2/MoOx heterostructure based two‐electrode photo rechargeable battery. A high‐resolution high angle annual dark‐field image of the NR is also shown indicating the structure containing both amorphous (MoOx) and crystalline (MoS2) regions.
doi_str_mv 10.1002/smll.202105029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2598534730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598534730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4399-6a4111e7cc77367a6f037b6f3b51f7e404db31cfd1c4aa5c20e4b0def473bb763</originalsourceid><addsrcrecordid>eNqFkEtLw0AQxxdRfFSvHiXgxUvrvrKbHFV8FOIDtedls5nUlCRbdxOkNz-Cn9FP4pZqBS_CwAwzv_kz80fokOARwZie-qauRxRTgmNM0w20SwRhQ5HQdHNdE7yD9ryfYcwI5XIb7TAuE5HEeBfdPbzYzkaPYF60m4LOa4iy6vP9Y2zb6Fx3HbgKfDTxVTuN7nRrnS2iGwht6zvXm653EF3WYLowAL-Ptkpdezj4zgM0ubp8vrgZZvfX44uzbGg4S9Oh0JwQAtIYKZmQWpSYyVyULI9JKYFjXuSMmLIghmsdG4qB57iAkkuW51KwATpZ6c6dfe3Bd6qpvIG61i3Y3isap0kcvmQ4oMd_0JntXRuuU1SQEGRFjVaUCY95B6Wau6rRbqEIVkun1dJptXY6LBx9y_Z5A8Ua_7E2AOkKeKtqWPwjp55us-xX_AtYpIs6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612611730</pqid></control><display><type>article</type><title>Photo Rechargeable Li‐Ion Batteries Using Nanorod Heterostructure Electrodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kumar, Amar ; Thakur, Pallavi ; Sharma, Rahul ; Puthirath, Anand B. ; Ajayan, Pulickel M. ; Narayanan, Tharangattu N.</creator><creatorcontrib>Kumar, Amar ; Thakur, Pallavi ; Sharma, Rahul ; Puthirath, Anand B. ; Ajayan, Pulickel M. ; Narayanan, Tharangattu N.</creatorcontrib><description>New ways of directly using solar energy to charge electrochemical energy storage devices such as batteries would lead to exciting developments in energy technologies. Here, a two‐electrode photo rechargeable Li‐ion battery is demonstrated using nanorod of type II semiconductor heterostructures with in‐plane domains of crystalline MoS2 and amorphous MoOx. The staggered energy band alignment of MoS2 and MoOx limits the electron holes recombination and causes holes to be retained in the Li intercalated MoS2 electrode. The holes generated in the MoS2 pushes the intercalated Li‐ions and hence charge the battery. Low band gap, high efficiency photo‐conversion and efficient electron–hole separation help the battery to fully charge within a few hours using solar light. The proposed concept and materials can enable next generation stable photo‐rechargeable battery electrodes, in contrast to the reported materials. The working (photo charging) of single nanorod (NR) containing a MoS2/MoOx heterostructure based two‐electrode photo rechargeable battery. A high‐resolution high angle annual dark‐field image of the NR is also shown indicating the structure containing both amorphous (MoOx) and crystalline (MoS2) regions.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202105029</identifier><identifier>PMID: 34786850</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Energy bands ; Energy storage ; Energy technology ; Heterostructures ; Holes (electron deficiencies) ; Lithium-ion batteries ; Li‐ion batteries ; Molybdenum disulfide ; MoO x ; MoS 2 ; Nanorods ; Nanotechnology ; photo rechargeable batteries ; Rechargeable batteries ; solar batteries ; Solar energy ; Storage batteries ; type II semiconductor heterostructures</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-12, Vol.17 (51), p.e2105029-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4399-6a4111e7cc77367a6f037b6f3b51f7e404db31cfd1c4aa5c20e4b0def473bb763</citedby><cites>FETCH-LOGICAL-c4399-6a4111e7cc77367a6f037b6f3b51f7e404db31cfd1c4aa5c20e4b0def473bb763</cites><orcidid>0000-0002-5201-7539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202105029$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202105029$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34786850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Amar</creatorcontrib><creatorcontrib>Thakur, Pallavi</creatorcontrib><creatorcontrib>Sharma, Rahul</creatorcontrib><creatorcontrib>Puthirath, Anand B.</creatorcontrib><creatorcontrib>Ajayan, Pulickel M.</creatorcontrib><creatorcontrib>Narayanan, Tharangattu N.</creatorcontrib><title>Photo Rechargeable Li‐Ion Batteries Using Nanorod Heterostructure Electrodes</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>New ways of directly using solar energy to charge electrochemical energy storage devices such as batteries would lead to exciting developments in energy technologies. Here, a two‐electrode photo rechargeable Li‐ion battery is demonstrated using nanorod of type II semiconductor heterostructures with in‐plane domains of crystalline MoS2 and amorphous MoOx. The staggered energy band alignment of MoS2 and MoOx limits the electron holes recombination and causes holes to be retained in the Li intercalated MoS2 electrode. The holes generated in the MoS2 pushes the intercalated Li‐ions and hence charge the battery. Low band gap, high efficiency photo‐conversion and efficient electron–hole separation help the battery to fully charge within a few hours using solar light. The proposed concept and materials can enable next generation stable photo‐rechargeable battery electrodes, in contrast to the reported materials. The working (photo charging) of single nanorod (NR) containing a MoS2/MoOx heterostructure based two‐electrode photo rechargeable battery. A high‐resolution high angle annual dark‐field image of the NR is also shown indicating the structure containing both amorphous (MoOx) and crystalline (MoS2) regions.</description><subject>Batteries</subject><subject>Energy bands</subject><subject>Energy storage</subject><subject>Energy technology</subject><subject>Heterostructures</subject><subject>Holes (electron deficiencies)</subject><subject>Lithium-ion batteries</subject><subject>Li‐ion batteries</subject><subject>Molybdenum disulfide</subject><subject>MoO x</subject><subject>MoS 2</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>photo rechargeable batteries</subject><subject>Rechargeable batteries</subject><subject>solar batteries</subject><subject>Solar energy</subject><subject>Storage batteries</subject><subject>type II semiconductor heterostructures</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AQxxdRfFSvHiXgxUvrvrKbHFV8FOIDtedls5nUlCRbdxOkNz-Cn9FP4pZqBS_CwAwzv_kz80fokOARwZie-qauRxRTgmNM0w20SwRhQ5HQdHNdE7yD9ryfYcwI5XIb7TAuE5HEeBfdPbzYzkaPYF60m4LOa4iy6vP9Y2zb6Fx3HbgKfDTxVTuN7nRrnS2iGwht6zvXm653EF3WYLowAL-Ptkpdezj4zgM0ubp8vrgZZvfX44uzbGg4S9Oh0JwQAtIYKZmQWpSYyVyULI9JKYFjXuSMmLIghmsdG4qB57iAkkuW51KwATpZ6c6dfe3Bd6qpvIG61i3Y3isap0kcvmQ4oMd_0JntXRuuU1SQEGRFjVaUCY95B6Wau6rRbqEIVkun1dJptXY6LBx9y_Z5A8Ua_7E2AOkKeKtqWPwjp55us-xX_AtYpIs6</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kumar, Amar</creator><creator>Thakur, Pallavi</creator><creator>Sharma, Rahul</creator><creator>Puthirath, Anand B.</creator><creator>Ajayan, Pulickel M.</creator><creator>Narayanan, Tharangattu N.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5201-7539</orcidid></search><sort><creationdate>20211201</creationdate><title>Photo Rechargeable Li‐Ion Batteries Using Nanorod Heterostructure Electrodes</title><author>Kumar, Amar ; Thakur, Pallavi ; Sharma, Rahul ; Puthirath, Anand B. ; Ajayan, Pulickel M. ; Narayanan, Tharangattu N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4399-6a4111e7cc77367a6f037b6f3b51f7e404db31cfd1c4aa5c20e4b0def473bb763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Energy bands</topic><topic>Energy storage</topic><topic>Energy technology</topic><topic>Heterostructures</topic><topic>Holes (electron deficiencies)</topic><topic>Lithium-ion batteries</topic><topic>Li‐ion batteries</topic><topic>Molybdenum disulfide</topic><topic>MoO x</topic><topic>MoS 2</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>photo rechargeable batteries</topic><topic>Rechargeable batteries</topic><topic>solar batteries</topic><topic>Solar energy</topic><topic>Storage batteries</topic><topic>type II semiconductor heterostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Amar</creatorcontrib><creatorcontrib>Thakur, Pallavi</creatorcontrib><creatorcontrib>Sharma, Rahul</creatorcontrib><creatorcontrib>Puthirath, Anand B.</creatorcontrib><creatorcontrib>Ajayan, Pulickel M.</creatorcontrib><creatorcontrib>Narayanan, Tharangattu N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Amar</au><au>Thakur, Pallavi</au><au>Sharma, Rahul</au><au>Puthirath, Anand B.</au><au>Ajayan, Pulickel M.</au><au>Narayanan, Tharangattu N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo Rechargeable Li‐Ion Batteries Using Nanorod Heterostructure Electrodes</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>17</volume><issue>51</issue><spage>e2105029</spage><epage>n/a</epage><pages>e2105029-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>New ways of directly using solar energy to charge electrochemical energy storage devices such as batteries would lead to exciting developments in energy technologies. Here, a two‐electrode photo rechargeable Li‐ion battery is demonstrated using nanorod of type II semiconductor heterostructures with in‐plane domains of crystalline MoS2 and amorphous MoOx. The staggered energy band alignment of MoS2 and MoOx limits the electron holes recombination and causes holes to be retained in the Li intercalated MoS2 electrode. The holes generated in the MoS2 pushes the intercalated Li‐ions and hence charge the battery. Low band gap, high efficiency photo‐conversion and efficient electron–hole separation help the battery to fully charge within a few hours using solar light. The proposed concept and materials can enable next generation stable photo‐rechargeable battery electrodes, in contrast to the reported materials. The working (photo charging) of single nanorod (NR) containing a MoS2/MoOx heterostructure based two‐electrode photo rechargeable battery. A high‐resolution high angle annual dark‐field image of the NR is also shown indicating the structure containing both amorphous (MoOx) and crystalline (MoS2) regions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34786850</pmid><doi>10.1002/smll.202105029</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5201-7539</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2021-12, Vol.17 (51), p.e2105029-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2598534730
source Wiley Online Library Journals Frontfile Complete
subjects Batteries
Energy bands
Energy storage
Energy technology
Heterostructures
Holes (electron deficiencies)
Lithium-ion batteries
Li‐ion batteries
Molybdenum disulfide
MoO x
MoS 2
Nanorods
Nanotechnology
photo rechargeable batteries
Rechargeable batteries
solar batteries
Solar energy
Storage batteries
type II semiconductor heterostructures
title Photo Rechargeable Li‐Ion Batteries Using Nanorod Heterostructure Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo%20Rechargeable%20Li%E2%80%90Ion%20Batteries%20Using%20Nanorod%20Heterostructure%20Electrodes&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Kumar,%20Amar&rft.date=2021-12-01&rft.volume=17&rft.issue=51&rft.spage=e2105029&rft.epage=n/a&rft.pages=e2105029-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202105029&rft_dat=%3Cproquest_cross%3E2598534730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612611730&rft_id=info:pmid/34786850&rfr_iscdi=true