Photo Rechargeable Li‐Ion Batteries Using Nanorod Heterostructure Electrodes
New ways of directly using solar energy to charge electrochemical energy storage devices such as batteries would lead to exciting developments in energy technologies. Here, a two‐electrode photo rechargeable Li‐ion battery is demonstrated using nanorod of type II semiconductor heterostructures with...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-12, Vol.17 (51), p.e2105029-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 51 |
container_start_page | e2105029 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 17 |
creator | Kumar, Amar Thakur, Pallavi Sharma, Rahul Puthirath, Anand B. Ajayan, Pulickel M. Narayanan, Tharangattu N. |
description | New ways of directly using solar energy to charge electrochemical energy storage devices such as batteries would lead to exciting developments in energy technologies. Here, a two‐electrode photo rechargeable Li‐ion battery is demonstrated using nanorod of type II semiconductor heterostructures with in‐plane domains of crystalline MoS2 and amorphous MoOx. The staggered energy band alignment of MoS2 and MoOx limits the electron holes recombination and causes holes to be retained in the Li intercalated MoS2 electrode. The holes generated in the MoS2 pushes the intercalated Li‐ions and hence charge the battery. Low band gap, high efficiency photo‐conversion and efficient electron–hole separation help the battery to fully charge within a few hours using solar light. The proposed concept and materials can enable next generation stable photo‐rechargeable battery electrodes, in contrast to the reported materials.
The working (photo charging) of single nanorod (NR) containing a MoS2/MoOx heterostructure based two‐electrode photo rechargeable battery. A high‐resolution high angle annual dark‐field image of the NR is also shown indicating the structure containing both amorphous (MoOx) and crystalline (MoS2) regions. |
doi_str_mv | 10.1002/smll.202105029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2598534730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598534730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4399-6a4111e7cc77367a6f037b6f3b51f7e404db31cfd1c4aa5c20e4b0def473bb763</originalsourceid><addsrcrecordid>eNqFkEtLw0AQxxdRfFSvHiXgxUvrvrKbHFV8FOIDtedls5nUlCRbdxOkNz-Cn9FP4pZqBS_CwAwzv_kz80fokOARwZie-qauRxRTgmNM0w20SwRhQ5HQdHNdE7yD9ryfYcwI5XIb7TAuE5HEeBfdPbzYzkaPYF60m4LOa4iy6vP9Y2zb6Fx3HbgKfDTxVTuN7nRrnS2iGwht6zvXm653EF3WYLowAL-Ptkpdezj4zgM0ubp8vrgZZvfX44uzbGg4S9Oh0JwQAtIYKZmQWpSYyVyULI9JKYFjXuSMmLIghmsdG4qB57iAkkuW51KwATpZ6c6dfe3Bd6qpvIG61i3Y3isap0kcvmQ4oMd_0JntXRuuU1SQEGRFjVaUCY95B6Wau6rRbqEIVkun1dJptXY6LBx9y_Z5A8Ua_7E2AOkKeKtqWPwjp55us-xX_AtYpIs6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612611730</pqid></control><display><type>article</type><title>Photo Rechargeable Li‐Ion Batteries Using Nanorod Heterostructure Electrodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kumar, Amar ; Thakur, Pallavi ; Sharma, Rahul ; Puthirath, Anand B. ; Ajayan, Pulickel M. ; Narayanan, Tharangattu N.</creator><creatorcontrib>Kumar, Amar ; Thakur, Pallavi ; Sharma, Rahul ; Puthirath, Anand B. ; Ajayan, Pulickel M. ; Narayanan, Tharangattu N.</creatorcontrib><description>New ways of directly using solar energy to charge electrochemical energy storage devices such as batteries would lead to exciting developments in energy technologies. Here, a two‐electrode photo rechargeable Li‐ion battery is demonstrated using nanorod of type II semiconductor heterostructures with in‐plane domains of crystalline MoS2 and amorphous MoOx. The staggered energy band alignment of MoS2 and MoOx limits the electron holes recombination and causes holes to be retained in the Li intercalated MoS2 electrode. The holes generated in the MoS2 pushes the intercalated Li‐ions and hence charge the battery. Low band gap, high efficiency photo‐conversion and efficient electron–hole separation help the battery to fully charge within a few hours using solar light. The proposed concept and materials can enable next generation stable photo‐rechargeable battery electrodes, in contrast to the reported materials.
The working (photo charging) of single nanorod (NR) containing a MoS2/MoOx heterostructure based two‐electrode photo rechargeable battery. A high‐resolution high angle annual dark‐field image of the NR is also shown indicating the structure containing both amorphous (MoOx) and crystalline (MoS2) regions.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202105029</identifier><identifier>PMID: 34786850</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Energy bands ; Energy storage ; Energy technology ; Heterostructures ; Holes (electron deficiencies) ; Lithium-ion batteries ; Li‐ion batteries ; Molybdenum disulfide ; MoO x ; MoS 2 ; Nanorods ; Nanotechnology ; photo rechargeable batteries ; Rechargeable batteries ; solar batteries ; Solar energy ; Storage batteries ; type II semiconductor heterostructures</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-12, Vol.17 (51), p.e2105029-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4399-6a4111e7cc77367a6f037b6f3b51f7e404db31cfd1c4aa5c20e4b0def473bb763</citedby><cites>FETCH-LOGICAL-c4399-6a4111e7cc77367a6f037b6f3b51f7e404db31cfd1c4aa5c20e4b0def473bb763</cites><orcidid>0000-0002-5201-7539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202105029$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202105029$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34786850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Amar</creatorcontrib><creatorcontrib>Thakur, Pallavi</creatorcontrib><creatorcontrib>Sharma, Rahul</creatorcontrib><creatorcontrib>Puthirath, Anand B.</creatorcontrib><creatorcontrib>Ajayan, Pulickel M.</creatorcontrib><creatorcontrib>Narayanan, Tharangattu N.</creatorcontrib><title>Photo Rechargeable Li‐Ion Batteries Using Nanorod Heterostructure Electrodes</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>New ways of directly using solar energy to charge electrochemical energy storage devices such as batteries would lead to exciting developments in energy technologies. Here, a two‐electrode photo rechargeable Li‐ion battery is demonstrated using nanorod of type II semiconductor heterostructures with in‐plane domains of crystalline MoS2 and amorphous MoOx. The staggered energy band alignment of MoS2 and MoOx limits the electron holes recombination and causes holes to be retained in the Li intercalated MoS2 electrode. The holes generated in the MoS2 pushes the intercalated Li‐ions and hence charge the battery. Low band gap, high efficiency photo‐conversion and efficient electron–hole separation help the battery to fully charge within a few hours using solar light. The proposed concept and materials can enable next generation stable photo‐rechargeable battery electrodes, in contrast to the reported materials.
The working (photo charging) of single nanorod (NR) containing a MoS2/MoOx heterostructure based two‐electrode photo rechargeable battery. A high‐resolution high angle annual dark‐field image of the NR is also shown indicating the structure containing both amorphous (MoOx) and crystalline (MoS2) regions.</description><subject>Batteries</subject><subject>Energy bands</subject><subject>Energy storage</subject><subject>Energy technology</subject><subject>Heterostructures</subject><subject>Holes (electron deficiencies)</subject><subject>Lithium-ion batteries</subject><subject>Li‐ion batteries</subject><subject>Molybdenum disulfide</subject><subject>MoO x</subject><subject>MoS 2</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>photo rechargeable batteries</subject><subject>Rechargeable batteries</subject><subject>solar batteries</subject><subject>Solar energy</subject><subject>Storage batteries</subject><subject>type II semiconductor heterostructures</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AQxxdRfFSvHiXgxUvrvrKbHFV8FOIDtedls5nUlCRbdxOkNz-Cn9FP4pZqBS_CwAwzv_kz80fokOARwZie-qauRxRTgmNM0w20SwRhQ5HQdHNdE7yD9ryfYcwI5XIb7TAuE5HEeBfdPbzYzkaPYF60m4LOa4iy6vP9Y2zb6Fx3HbgKfDTxVTuN7nRrnS2iGwht6zvXm653EF3WYLowAL-Ptkpdezj4zgM0ubp8vrgZZvfX44uzbGg4S9Oh0JwQAtIYKZmQWpSYyVyULI9JKYFjXuSMmLIghmsdG4qB57iAkkuW51KwATpZ6c6dfe3Bd6qpvIG61i3Y3isap0kcvmQ4oMd_0JntXRuuU1SQEGRFjVaUCY95B6Wau6rRbqEIVkun1dJptXY6LBx9y_Z5A8Ua_7E2AOkKeKtqWPwjp55us-xX_AtYpIs6</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kumar, Amar</creator><creator>Thakur, Pallavi</creator><creator>Sharma, Rahul</creator><creator>Puthirath, Anand B.</creator><creator>Ajayan, Pulickel M.</creator><creator>Narayanan, Tharangattu N.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5201-7539</orcidid></search><sort><creationdate>20211201</creationdate><title>Photo Rechargeable Li‐Ion Batteries Using Nanorod Heterostructure Electrodes</title><author>Kumar, Amar ; Thakur, Pallavi ; Sharma, Rahul ; Puthirath, Anand B. ; Ajayan, Pulickel M. ; Narayanan, Tharangattu N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4399-6a4111e7cc77367a6f037b6f3b51f7e404db31cfd1c4aa5c20e4b0def473bb763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Energy bands</topic><topic>Energy storage</topic><topic>Energy technology</topic><topic>Heterostructures</topic><topic>Holes (electron deficiencies)</topic><topic>Lithium-ion batteries</topic><topic>Li‐ion batteries</topic><topic>Molybdenum disulfide</topic><topic>MoO x</topic><topic>MoS 2</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>photo rechargeable batteries</topic><topic>Rechargeable batteries</topic><topic>solar batteries</topic><topic>Solar energy</topic><topic>Storage batteries</topic><topic>type II semiconductor heterostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Amar</creatorcontrib><creatorcontrib>Thakur, Pallavi</creatorcontrib><creatorcontrib>Sharma, Rahul</creatorcontrib><creatorcontrib>Puthirath, Anand B.</creatorcontrib><creatorcontrib>Ajayan, Pulickel M.</creatorcontrib><creatorcontrib>Narayanan, Tharangattu N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Amar</au><au>Thakur, Pallavi</au><au>Sharma, Rahul</au><au>Puthirath, Anand B.</au><au>Ajayan, Pulickel M.</au><au>Narayanan, Tharangattu N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo Rechargeable Li‐Ion Batteries Using Nanorod Heterostructure Electrodes</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>17</volume><issue>51</issue><spage>e2105029</spage><epage>n/a</epage><pages>e2105029-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>New ways of directly using solar energy to charge electrochemical energy storage devices such as batteries would lead to exciting developments in energy technologies. Here, a two‐electrode photo rechargeable Li‐ion battery is demonstrated using nanorod of type II semiconductor heterostructures with in‐plane domains of crystalline MoS2 and amorphous MoOx. The staggered energy band alignment of MoS2 and MoOx limits the electron holes recombination and causes holes to be retained in the Li intercalated MoS2 electrode. The holes generated in the MoS2 pushes the intercalated Li‐ions and hence charge the battery. Low band gap, high efficiency photo‐conversion and efficient electron–hole separation help the battery to fully charge within a few hours using solar light. The proposed concept and materials can enable next generation stable photo‐rechargeable battery electrodes, in contrast to the reported materials.
The working (photo charging) of single nanorod (NR) containing a MoS2/MoOx heterostructure based two‐electrode photo rechargeable battery. A high‐resolution high angle annual dark‐field image of the NR is also shown indicating the structure containing both amorphous (MoOx) and crystalline (MoS2) regions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34786850</pmid><doi>10.1002/smll.202105029</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5201-7539</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2021-12, Vol.17 (51), p.e2105029-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2598534730 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Batteries Energy bands Energy storage Energy technology Heterostructures Holes (electron deficiencies) Lithium-ion batteries Li‐ion batteries Molybdenum disulfide MoO x MoS 2 Nanorods Nanotechnology photo rechargeable batteries Rechargeable batteries solar batteries Solar energy Storage batteries type II semiconductor heterostructures |
title | Photo Rechargeable Li‐Ion Batteries Using Nanorod Heterostructure Electrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo%20Rechargeable%20Li%E2%80%90Ion%20Batteries%20Using%20Nanorod%20Heterostructure%20Electrodes&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Kumar,%20Amar&rft.date=2021-12-01&rft.volume=17&rft.issue=51&rft.spage=e2105029&rft.epage=n/a&rft.pages=e2105029-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202105029&rft_dat=%3Cproquest_cross%3E2598534730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612611730&rft_id=info:pmid/34786850&rfr_iscdi=true |