Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers

The anisotropic magnetoresistance (AMR) at low temperatures is theoretically studied for low-dimensional NiFe-based systems in various geometries by solving the Boltzmann transport equation. The AMR is treated by introducing spin-dependent anisotropic mean free paths, making use of anisotropic-scatt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter Condensed matter, 1995-01, Vol.51 (1), p.283-291
Hauptverfasser: Rijks, TG, Coehoorn, R, de Jong MJ, de Jonge WJ
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 1
container_start_page 283
container_title Physical review. B, Condensed matter
container_volume 51
creator Rijks, TG
Coehoorn, R
de Jong MJ
de Jonge WJ
description The anisotropic magnetoresistance (AMR) at low temperatures is theoretically studied for low-dimensional NiFe-based systems in various geometries by solving the Boltzmann transport equation. The AMR is treated by introducing spin-dependent anisotropic mean free paths, making use of anisotropic-scattering parameters that are extracted from experimental spin-resolved resistivity data for bulk dilute NiFe alloys. A first set of calculations comprises the AMR in NiFe thin films and cylindrical wires, as a function of the layer thickness and wire diameter, respectively. For the thin film case we have considered rotation of the magnetization vector within the film plane as well as out of the film plane. For the latter the highest AMR ratio is found, which even slightly exceeds the bulk value. For wires the dependence of the AMR on the dimensions is qualitatively different as compared to the film case due to the relatively enhanced importance of boundary scattering. Finally, the validity of a description of the combined effect of AMR and the giant magnetoresistance in terms of a simple summation of the two effects is studied by performing model calculations for NiFe/Cu/NiFe trilayers.
doi_str_mv 10.1103/physrevb.51.283
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25981105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859214234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-49e49c05c93aafb49682348059804e584254dcc787ece220e4116d42dfe2a3383</originalsourceid><addsrcrecordid>eNp9kUlLA0EQhRtRYlzOnoQ5iYdM0mum-6jBDYKKy3no9NSYlp7FqRkl_94Wg0cLirp87xW8R8gJo1PGqJi16w128LmaKjblWuyQMaNGpSIzapeMKZuLlGlu9skB4juNw-dmREbGZBnV2Zi0z1B5FyyidzYkcd0QbO-bGpOmTPo1JLb22PRd03qXVPathr7pAD32tnbwA937a0hXFqGIvK-T0ocKJ8mXj9gkyoukGkLvg91Ah0dkr7QB4Xh7D8nr9dXL4jZdPtzcLS6WqZOZ7lNpQBpHlTPC2nIlzVxzITVVRlMJSkuuZOFcpjNwwDkFydi8kLwogVshtDgkZ7--bdd8DIB9Xnl0EIKtoRkw59EpJqgieP4vyLQynMn4PaKzX9R1DcbYy7ztfGW7Tc5o_lNH_hjreILPy1yxPNYRFadb82FVQfHHb_MX3_VxiMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859214234</pqid></control><display><type>article</type><title>Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers</title><source>American Physical Society Journals</source><creator>Rijks, TG ; Coehoorn, R ; de Jong MJ ; de Jonge WJ</creator><creatorcontrib>Rijks, TG ; Coehoorn, R ; de Jong MJ ; de Jonge WJ</creatorcontrib><description>The anisotropic magnetoresistance (AMR) at low temperatures is theoretically studied for low-dimensional NiFe-based systems in various geometries by solving the Boltzmann transport equation. The AMR is treated by introducing spin-dependent anisotropic mean free paths, making use of anisotropic-scattering parameters that are extracted from experimental spin-resolved resistivity data for bulk dilute NiFe alloys. A first set of calculations comprises the AMR in NiFe thin films and cylindrical wires, as a function of the layer thickness and wire diameter, respectively. For the thin film case we have considered rotation of the magnetization vector within the film plane as well as out of the film plane. For the latter the highest AMR ratio is found, which even slightly exceeds the bulk value. For wires the dependence of the AMR on the dimensions is qualitatively different as compared to the film case due to the relatively enhanced importance of boundary scattering. Finally, the validity of a description of the combined effect of AMR and the giant magnetoresistance in terms of a simple summation of the two effects is studied by performing model calculations for NiFe/Cu/NiFe trilayers.</description><identifier>ISSN: 0163-1829</identifier><identifier>EISSN: 1095-3795</identifier><identifier>DOI: 10.1103/physrevb.51.283</identifier><identifier>PMID: 9977087</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. B, Condensed matter, 1995-01, Vol.51 (1), p.283-291</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-49e49c05c93aafb49682348059804e584254dcc787ece220e4116d42dfe2a3383</citedby><cites>FETCH-LOGICAL-c478t-49e49c05c93aafb49682348059804e584254dcc787ece220e4116d42dfe2a3383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9977087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rijks, TG</creatorcontrib><creatorcontrib>Coehoorn, R</creatorcontrib><creatorcontrib>de Jong MJ</creatorcontrib><creatorcontrib>de Jonge WJ</creatorcontrib><title>Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers</title><title>Physical review. B, Condensed matter</title><addtitle>Phys Rev B Condens Matter</addtitle><description>The anisotropic magnetoresistance (AMR) at low temperatures is theoretically studied for low-dimensional NiFe-based systems in various geometries by solving the Boltzmann transport equation. The AMR is treated by introducing spin-dependent anisotropic mean free paths, making use of anisotropic-scattering parameters that are extracted from experimental spin-resolved resistivity data for bulk dilute NiFe alloys. A first set of calculations comprises the AMR in NiFe thin films and cylindrical wires, as a function of the layer thickness and wire diameter, respectively. For the thin film case we have considered rotation of the magnetization vector within the film plane as well as out of the film plane. For the latter the highest AMR ratio is found, which even slightly exceeds the bulk value. For wires the dependence of the AMR on the dimensions is qualitatively different as compared to the film case due to the relatively enhanced importance of boundary scattering. Finally, the validity of a description of the combined effect of AMR and the giant magnetoresistance in terms of a simple summation of the two effects is studied by performing model calculations for NiFe/Cu/NiFe trilayers.</description><issn>0163-1829</issn><issn>1095-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kUlLA0EQhRtRYlzOnoQ5iYdM0mum-6jBDYKKy3no9NSYlp7FqRkl_94Wg0cLirp87xW8R8gJo1PGqJi16w128LmaKjblWuyQMaNGpSIzapeMKZuLlGlu9skB4juNw-dmREbGZBnV2Zi0z1B5FyyidzYkcd0QbO-bGpOmTPo1JLb22PRd03qXVPathr7pAD32tnbwA937a0hXFqGIvK-T0ocKJ8mXj9gkyoukGkLvg91Ah0dkr7QB4Xh7D8nr9dXL4jZdPtzcLS6WqZOZ7lNpQBpHlTPC2nIlzVxzITVVRlMJSkuuZOFcpjNwwDkFydi8kLwogVshtDgkZ7--bdd8DIB9Xnl0EIKtoRkw59EpJqgieP4vyLQynMn4PaKzX9R1DcbYy7ztfGW7Tc5o_lNH_hjreILPy1yxPNYRFadb82FVQfHHb_MX3_VxiMw</recordid><startdate>19950101</startdate><enddate>19950101</enddate><creator>Rijks, TG</creator><creator>Coehoorn, R</creator><creator>de Jong MJ</creator><creator>de Jonge WJ</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19950101</creationdate><title>Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers</title><author>Rijks, TG ; Coehoorn, R ; de Jong MJ ; de Jonge WJ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-49e49c05c93aafb49682348059804e584254dcc787ece220e4116d42dfe2a3383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rijks, TG</creatorcontrib><creatorcontrib>Coehoorn, R</creatorcontrib><creatorcontrib>de Jong MJ</creatorcontrib><creatorcontrib>de Jonge WJ</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Physical review. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rijks, TG</au><au>Coehoorn, R</au><au>de Jong MJ</au><au>de Jonge WJ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers</atitle><jtitle>Physical review. B, Condensed matter</jtitle><addtitle>Phys Rev B Condens Matter</addtitle><date>1995-01-01</date><risdate>1995</risdate><volume>51</volume><issue>1</issue><spage>283</spage><epage>291</epage><pages>283-291</pages><issn>0163-1829</issn><eissn>1095-3795</eissn><abstract>The anisotropic magnetoresistance (AMR) at low temperatures is theoretically studied for low-dimensional NiFe-based systems in various geometries by solving the Boltzmann transport equation. The AMR is treated by introducing spin-dependent anisotropic mean free paths, making use of anisotropic-scattering parameters that are extracted from experimental spin-resolved resistivity data for bulk dilute NiFe alloys. A first set of calculations comprises the AMR in NiFe thin films and cylindrical wires, as a function of the layer thickness and wire diameter, respectively. For the thin film case we have considered rotation of the magnetization vector within the film plane as well as out of the film plane. For the latter the highest AMR ratio is found, which even slightly exceeds the bulk value. For wires the dependence of the AMR on the dimensions is qualitatively different as compared to the film case due to the relatively enhanced importance of boundary scattering. Finally, the validity of a description of the combined effect of AMR and the giant magnetoresistance in terms of a simple summation of the two effects is studied by performing model calculations for NiFe/Cu/NiFe trilayers.</abstract><cop>United States</cop><pmid>9977087</pmid><doi>10.1103/physrevb.51.283</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0163-1829
ispartof Physical review. B, Condensed matter, 1995-01, Vol.51 (1), p.283-291
issn 0163-1829
1095-3795
language eng
recordid cdi_proquest_miscellaneous_25981105
source American Physical Society Journals
title Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiclassical%20calculations%20of%20the%20anisotropic%20magnetoresistance%20of%20NiFe-based%20thin%20films,%20wires,%20and%20multilayers&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter&rft.au=Rijks,%20TG&rft.date=1995-01-01&rft.volume=51&rft.issue=1&rft.spage=283&rft.epage=291&rft.pages=283-291&rft.issn=0163-1829&rft.eissn=1095-3795&rft_id=info:doi/10.1103/physrevb.51.283&rft_dat=%3Cproquest_cross%3E1859214234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859214234&rft_id=info:pmid/9977087&rfr_iscdi=true