Assessment of measurement precision in single‐voxel spectroscopy at 7 T: Toward minimal detectable changes of metabolite concentrations in the human brain in vivo
Purpose To introduce a study design and statistical analysis framework to assess the repeatability, reproducibility, and minimal detectable changes (MDCs) of metabolite concentrations determined by in vivo MRS. Methods An unbalanced nested study design was chosen to acquire in vivo MRS data within d...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2022-03, Vol.87 (3), p.1119-1135 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1135 |
---|---|
container_issue | 3 |
container_start_page | 1119 |
container_title | Magnetic resonance in medicine |
container_volume | 87 |
creator | Riemann, Layla Tabea Aigner, Christoph Stefan Ellison, Stephen L. R. Brühl, Rüdiger Mekle, Ralf Schmitter, Sebastian Speck, Oliver Rose, Georg Ittermann, Bernd Fillmer, Ariane |
description | Purpose
To introduce a study design and statistical analysis framework to assess the repeatability, reproducibility, and minimal detectable changes (MDCs) of metabolite concentrations determined by in vivo MRS.
Methods
An unbalanced nested study design was chosen to acquire in vivo MRS data within different repeatability and reproducibility scenarios. A spin‐echo, full‐intensity acquired localized (SPECIAL) sequence was employed at 7 T utlizing three different inversion pulses: a hyperbolic secant (HS), a gradient offset independent adiabaticity (GOIA), and a wideband, uniform rate, smooth truncation (WURST) pulse. Metabolite concentrations, Cramér‐Rao lower bounds (CRLBs) and coefficients of variation (CVs) were calculated. Both Bland‐Altman analysis and a restricted maximum‐likelihood estimation (REML) analysis were performed to estimate the different variance contributions of the repeatability and reproducibility of the measured concentration. A Bland‐Altmann analysis of the spectral shape was performed to assess the variance of the spectral shape, independent of quantification model influences.
Results
For the used setup, minimal detectable changes of brain metabolite concentrations were found to be between 0.40 µmol/g and 2.23 µmol/g. CRLBs account for only 16 % to 74 % of the total variance of the metabolite concentrations. The application of gradient‐modulated inversion pulses in SPECIAL led to slightly improved repeatability, but overall reproducibility appeared to be limited by differences in positioning, calibration, and other day‐to‐day variations throughout different sessions.
Conclusion
A framework is introduced to estimate the precision of metabolite concentrations obtained by MRS in vivo, and the minimal detectable changes for 13 metabolite concentrations measured at 7 T using SPECIAL are obtained. |
doi_str_mv | 10.1002/mrm.29034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2598079436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598079436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-22ffa39e3a39725c6236ff9311b358c8a1d969d77c8af07f4ad25aba3aae78513</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EokNhwQsgS2xgkdY_SRyzq6qWVmqFhIa15Tg3HVeOHexkyuz6CH0InownwZ0UFkhs_HP16ZyrcxB6S8kRJYQdD3E4YpLw8hla0YqxglWyfI5WRJSk4FSWB-hVSreEEClF-RId8FI0nIt6hX6epAQpDeAnHHo8gE5zhP13jGBsssFj63Gy_sbBr_uHbfgBDqcRzBRDMmHcYT1hgdef8Drc6djhwXo7aIc7mDKkWwfYbLS_gbQ45FFwdsrT4E02inrKJunRZdoA3syD9riN2u6Nt3YbXqMXvXYJ3jzdh-jb-dn69KK4-vL58vTkqjC8acqCsb7XXALPh2CVqRmv-15ySlteNabRtJO17ITIz56IvtQdq3SrudYgmoryQ_Rh0R1j-D5DmtRgkwHntIcwJ5VjbYiQJa8z-v4f9DbM0eftFKsZpUxUlcjUx4UyOasUoVdjzNnEnaJEPVancnVqX11m3z0pzu0A3V_yT1cZOF6AO-tg938ldf31epH8Dc9Aptg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621127557</pqid></control><display><type>article</type><title>Assessment of measurement precision in single‐voxel spectroscopy at 7 T: Toward minimal detectable changes of metabolite concentrations in the human brain in vivo</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Riemann, Layla Tabea ; Aigner, Christoph Stefan ; Ellison, Stephen L. R. ; Brühl, Rüdiger ; Mekle, Ralf ; Schmitter, Sebastian ; Speck, Oliver ; Rose, Georg ; Ittermann, Bernd ; Fillmer, Ariane</creator><creatorcontrib>Riemann, Layla Tabea ; Aigner, Christoph Stefan ; Ellison, Stephen L. R. ; Brühl, Rüdiger ; Mekle, Ralf ; Schmitter, Sebastian ; Speck, Oliver ; Rose, Georg ; Ittermann, Bernd ; Fillmer, Ariane</creatorcontrib><description>Purpose
To introduce a study design and statistical analysis framework to assess the repeatability, reproducibility, and minimal detectable changes (MDCs) of metabolite concentrations determined by in vivo MRS.
Methods
An unbalanced nested study design was chosen to acquire in vivo MRS data within different repeatability and reproducibility scenarios. A spin‐echo, full‐intensity acquired localized (SPECIAL) sequence was employed at 7 T utlizing three different inversion pulses: a hyperbolic secant (HS), a gradient offset independent adiabaticity (GOIA), and a wideband, uniform rate, smooth truncation (WURST) pulse. Metabolite concentrations, Cramér‐Rao lower bounds (CRLBs) and coefficients of variation (CVs) were calculated. Both Bland‐Altman analysis and a restricted maximum‐likelihood estimation (REML) analysis were performed to estimate the different variance contributions of the repeatability and reproducibility of the measured concentration. A Bland‐Altmann analysis of the spectral shape was performed to assess the variance of the spectral shape, independent of quantification model influences.
Results
For the used setup, minimal detectable changes of brain metabolite concentrations were found to be between 0.40 µmol/g and 2.23 µmol/g. CRLBs account for only 16 % to 74 % of the total variance of the metabolite concentrations. The application of gradient‐modulated inversion pulses in SPECIAL led to slightly improved repeatability, but overall reproducibility appeared to be limited by differences in positioning, calibration, and other day‐to‐day variations throughout different sessions.
Conclusion
A framework is introduced to estimate the precision of metabolite concentrations obtained by MRS in vivo, and the minimal detectable changes for 13 metabolite concentrations measured at 7 T using SPECIAL are obtained.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.29034</identifier><identifier>PMID: 34783376</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Brain ; Brain - diagnostic imaging ; Calibration ; Coefficient of variation ; CRLBs ; Humans ; In vivo methods and tests ; Inversion ; Lower bounds ; Magnetic Resonance Spectroscopy ; measurement precision ; Metabolites ; minimal detectable change ; MR spectroscopy ; Reproducibility ; Reproducibility of Results ; reproducibility/repeatability ; SPECIAL ; Spectroscopy ; Statistical analysis ; Variance</subject><ispartof>Magnetic resonance in medicine, 2022-03, Vol.87 (3), p.1119-1135</ispartof><rights>2021 Physikalisch‐Technische Bundesanstalt Berlin. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine</rights><rights>2021 Physikalisch-Technische Bundesanstalt Berlin. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-22ffa39e3a39725c6236ff9311b358c8a1d969d77c8af07f4ad25aba3aae78513</citedby><cites>FETCH-LOGICAL-c3884-22ffa39e3a39725c6236ff9311b358c8a1d969d77c8af07f4ad25aba3aae78513</cites><orcidid>0000-0002-2215-150X ; 0000-0002-3008-6656 ; 0000-0003-3333-6603 ; 0000-0002-4087-471X ; 0000-0001-5411-7288 ; 0000-0003-0111-5996 ; 0000-0001-6821-7722 ; 0000-0003-3618-9610 ; 0000-0003-4410-6790 ; 0000-0002-6019-5597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.29034$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.29034$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34783376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riemann, Layla Tabea</creatorcontrib><creatorcontrib>Aigner, Christoph Stefan</creatorcontrib><creatorcontrib>Ellison, Stephen L. R.</creatorcontrib><creatorcontrib>Brühl, Rüdiger</creatorcontrib><creatorcontrib>Mekle, Ralf</creatorcontrib><creatorcontrib>Schmitter, Sebastian</creatorcontrib><creatorcontrib>Speck, Oliver</creatorcontrib><creatorcontrib>Rose, Georg</creatorcontrib><creatorcontrib>Ittermann, Bernd</creatorcontrib><creatorcontrib>Fillmer, Ariane</creatorcontrib><title>Assessment of measurement precision in single‐voxel spectroscopy at 7 T: Toward minimal detectable changes of metabolite concentrations in the human brain in vivo</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
To introduce a study design and statistical analysis framework to assess the repeatability, reproducibility, and minimal detectable changes (MDCs) of metabolite concentrations determined by in vivo MRS.
Methods
An unbalanced nested study design was chosen to acquire in vivo MRS data within different repeatability and reproducibility scenarios. A spin‐echo, full‐intensity acquired localized (SPECIAL) sequence was employed at 7 T utlizing three different inversion pulses: a hyperbolic secant (HS), a gradient offset independent adiabaticity (GOIA), and a wideband, uniform rate, smooth truncation (WURST) pulse. Metabolite concentrations, Cramér‐Rao lower bounds (CRLBs) and coefficients of variation (CVs) were calculated. Both Bland‐Altman analysis and a restricted maximum‐likelihood estimation (REML) analysis were performed to estimate the different variance contributions of the repeatability and reproducibility of the measured concentration. A Bland‐Altmann analysis of the spectral shape was performed to assess the variance of the spectral shape, independent of quantification model influences.
Results
For the used setup, minimal detectable changes of brain metabolite concentrations were found to be between 0.40 µmol/g and 2.23 µmol/g. CRLBs account for only 16 % to 74 % of the total variance of the metabolite concentrations. The application of gradient‐modulated inversion pulses in SPECIAL led to slightly improved repeatability, but overall reproducibility appeared to be limited by differences in positioning, calibration, and other day‐to‐day variations throughout different sessions.
Conclusion
A framework is introduced to estimate the precision of metabolite concentrations obtained by MRS in vivo, and the minimal detectable changes for 13 metabolite concentrations measured at 7 T using SPECIAL are obtained.</description><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Calibration</subject><subject>Coefficient of variation</subject><subject>CRLBs</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Inversion</subject><subject>Lower bounds</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>measurement precision</subject><subject>Metabolites</subject><subject>minimal detectable change</subject><subject>MR spectroscopy</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>reproducibility/repeatability</subject><subject>SPECIAL</subject><subject>Spectroscopy</subject><subject>Statistical analysis</subject><subject>Variance</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAUhS0EokNhwQsgS2xgkdY_SRyzq6qWVmqFhIa15Tg3HVeOHexkyuz6CH0InownwZ0UFkhs_HP16ZyrcxB6S8kRJYQdD3E4YpLw8hla0YqxglWyfI5WRJSk4FSWB-hVSreEEClF-RId8FI0nIt6hX6epAQpDeAnHHo8gE5zhP13jGBsssFj63Gy_sbBr_uHbfgBDqcRzBRDMmHcYT1hgdef8Drc6djhwXo7aIc7mDKkWwfYbLS_gbQ45FFwdsrT4E02inrKJunRZdoA3syD9riN2u6Nt3YbXqMXvXYJ3jzdh-jb-dn69KK4-vL58vTkqjC8acqCsb7XXALPh2CVqRmv-15ySlteNabRtJO17ITIz56IvtQdq3SrudYgmoryQ_Rh0R1j-D5DmtRgkwHntIcwJ5VjbYiQJa8z-v4f9DbM0eftFKsZpUxUlcjUx4UyOasUoVdjzNnEnaJEPVancnVqX11m3z0pzu0A3V_yT1cZOF6AO-tg938ldf31epH8Dc9Aptg</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Riemann, Layla Tabea</creator><creator>Aigner, Christoph Stefan</creator><creator>Ellison, Stephen L. R.</creator><creator>Brühl, Rüdiger</creator><creator>Mekle, Ralf</creator><creator>Schmitter, Sebastian</creator><creator>Speck, Oliver</creator><creator>Rose, Georg</creator><creator>Ittermann, Bernd</creator><creator>Fillmer, Ariane</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2215-150X</orcidid><orcidid>https://orcid.org/0000-0002-3008-6656</orcidid><orcidid>https://orcid.org/0000-0003-3333-6603</orcidid><orcidid>https://orcid.org/0000-0002-4087-471X</orcidid><orcidid>https://orcid.org/0000-0001-5411-7288</orcidid><orcidid>https://orcid.org/0000-0003-0111-5996</orcidid><orcidid>https://orcid.org/0000-0001-6821-7722</orcidid><orcidid>https://orcid.org/0000-0003-3618-9610</orcidid><orcidid>https://orcid.org/0000-0003-4410-6790</orcidid><orcidid>https://orcid.org/0000-0002-6019-5597</orcidid></search><sort><creationdate>202203</creationdate><title>Assessment of measurement precision in single‐voxel spectroscopy at 7 T: Toward minimal detectable changes of metabolite concentrations in the human brain in vivo</title><author>Riemann, Layla Tabea ; Aigner, Christoph Stefan ; Ellison, Stephen L. R. ; Brühl, Rüdiger ; Mekle, Ralf ; Schmitter, Sebastian ; Speck, Oliver ; Rose, Georg ; Ittermann, Bernd ; Fillmer, Ariane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-22ffa39e3a39725c6236ff9311b358c8a1d969d77c8af07f4ad25aba3aae78513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Calibration</topic><topic>Coefficient of variation</topic><topic>CRLBs</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Inversion</topic><topic>Lower bounds</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>measurement precision</topic><topic>Metabolites</topic><topic>minimal detectable change</topic><topic>MR spectroscopy</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>reproducibility/repeatability</topic><topic>SPECIAL</topic><topic>Spectroscopy</topic><topic>Statistical analysis</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riemann, Layla Tabea</creatorcontrib><creatorcontrib>Aigner, Christoph Stefan</creatorcontrib><creatorcontrib>Ellison, Stephen L. R.</creatorcontrib><creatorcontrib>Brühl, Rüdiger</creatorcontrib><creatorcontrib>Mekle, Ralf</creatorcontrib><creatorcontrib>Schmitter, Sebastian</creatorcontrib><creatorcontrib>Speck, Oliver</creatorcontrib><creatorcontrib>Rose, Georg</creatorcontrib><creatorcontrib>Ittermann, Bernd</creatorcontrib><creatorcontrib>Fillmer, Ariane</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riemann, Layla Tabea</au><au>Aigner, Christoph Stefan</au><au>Ellison, Stephen L. R.</au><au>Brühl, Rüdiger</au><au>Mekle, Ralf</au><au>Schmitter, Sebastian</au><au>Speck, Oliver</au><au>Rose, Georg</au><au>Ittermann, Bernd</au><au>Fillmer, Ariane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of measurement precision in single‐voxel spectroscopy at 7 T: Toward minimal detectable changes of metabolite concentrations in the human brain in vivo</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2022-03</date><risdate>2022</risdate><volume>87</volume><issue>3</issue><spage>1119</spage><epage>1135</epage><pages>1119-1135</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
To introduce a study design and statistical analysis framework to assess the repeatability, reproducibility, and minimal detectable changes (MDCs) of metabolite concentrations determined by in vivo MRS.
Methods
An unbalanced nested study design was chosen to acquire in vivo MRS data within different repeatability and reproducibility scenarios. A spin‐echo, full‐intensity acquired localized (SPECIAL) sequence was employed at 7 T utlizing three different inversion pulses: a hyperbolic secant (HS), a gradient offset independent adiabaticity (GOIA), and a wideband, uniform rate, smooth truncation (WURST) pulse. Metabolite concentrations, Cramér‐Rao lower bounds (CRLBs) and coefficients of variation (CVs) were calculated. Both Bland‐Altman analysis and a restricted maximum‐likelihood estimation (REML) analysis were performed to estimate the different variance contributions of the repeatability and reproducibility of the measured concentration. A Bland‐Altmann analysis of the spectral shape was performed to assess the variance of the spectral shape, independent of quantification model influences.
Results
For the used setup, minimal detectable changes of brain metabolite concentrations were found to be between 0.40 µmol/g and 2.23 µmol/g. CRLBs account for only 16 % to 74 % of the total variance of the metabolite concentrations. The application of gradient‐modulated inversion pulses in SPECIAL led to slightly improved repeatability, but overall reproducibility appeared to be limited by differences in positioning, calibration, and other day‐to‐day variations throughout different sessions.
Conclusion
A framework is introduced to estimate the precision of metabolite concentrations obtained by MRS in vivo, and the minimal detectable changes for 13 metabolite concentrations measured at 7 T using SPECIAL are obtained.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34783376</pmid><doi>10.1002/mrm.29034</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2215-150X</orcidid><orcidid>https://orcid.org/0000-0002-3008-6656</orcidid><orcidid>https://orcid.org/0000-0003-3333-6603</orcidid><orcidid>https://orcid.org/0000-0002-4087-471X</orcidid><orcidid>https://orcid.org/0000-0001-5411-7288</orcidid><orcidid>https://orcid.org/0000-0003-0111-5996</orcidid><orcidid>https://orcid.org/0000-0001-6821-7722</orcidid><orcidid>https://orcid.org/0000-0003-3618-9610</orcidid><orcidid>https://orcid.org/0000-0003-4410-6790</orcidid><orcidid>https://orcid.org/0000-0002-6019-5597</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2022-03, Vol.87 (3), p.1119-1135 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_2598079436 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Brain Brain - diagnostic imaging Calibration Coefficient of variation CRLBs Humans In vivo methods and tests Inversion Lower bounds Magnetic Resonance Spectroscopy measurement precision Metabolites minimal detectable change MR spectroscopy Reproducibility Reproducibility of Results reproducibility/repeatability SPECIAL Spectroscopy Statistical analysis Variance |
title | Assessment of measurement precision in single‐voxel spectroscopy at 7 T: Toward minimal detectable changes of metabolite concentrations in the human brain in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20measurement%20precision%20in%20single%E2%80%90voxel%20spectroscopy%20at%207%20T:%20Toward%20minimal%20detectable%20changes%20of%20metabolite%20concentrations%20in%20the%20human%20brain%20in%20vivo&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Riemann,%20Layla%20Tabea&rft.date=2022-03&rft.volume=87&rft.issue=3&rft.spage=1119&rft.epage=1135&rft.pages=1119-1135&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.29034&rft_dat=%3Cproquest_cross%3E2598079436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621127557&rft_id=info:pmid/34783376&rfr_iscdi=true |