Assessment of measurement precision in single‐voxel spectroscopy at 7 T: Toward minimal detectable changes of metabolite concentrations in the human brain in vivo

Purpose To introduce a study design and statistical analysis framework to assess the repeatability, reproducibility, and minimal detectable changes (MDCs) of metabolite concentrations determined by in vivo MRS. Methods An unbalanced nested study design was chosen to acquire in vivo MRS data within d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2022-03, Vol.87 (3), p.1119-1135
Hauptverfasser: Riemann, Layla Tabea, Aigner, Christoph Stefan, Ellison, Stephen L. R., Brühl, Rüdiger, Mekle, Ralf, Schmitter, Sebastian, Speck, Oliver, Rose, Georg, Ittermann, Bernd, Fillmer, Ariane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1135
container_issue 3
container_start_page 1119
container_title Magnetic resonance in medicine
container_volume 87
creator Riemann, Layla Tabea
Aigner, Christoph Stefan
Ellison, Stephen L. R.
Brühl, Rüdiger
Mekle, Ralf
Schmitter, Sebastian
Speck, Oliver
Rose, Georg
Ittermann, Bernd
Fillmer, Ariane
description Purpose To introduce a study design and statistical analysis framework to assess the repeatability, reproducibility, and minimal detectable changes (MDCs) of metabolite concentrations determined by in vivo MRS. Methods An unbalanced nested study design was chosen to acquire in vivo MRS data within different repeatability and reproducibility scenarios. A spin‐echo, full‐intensity acquired localized (SPECIAL) sequence was employed at 7 T utlizing three different inversion pulses: a hyperbolic secant (HS), a gradient offset independent adiabaticity (GOIA), and a wideband, uniform rate, smooth truncation (WURST) pulse. Metabolite concentrations, Cramér‐Rao lower bounds (CRLBs) and coefficients of variation (CVs) were calculated. Both Bland‐Altman analysis and a restricted maximum‐likelihood estimation (REML) analysis were performed to estimate the different variance contributions of the repeatability and reproducibility of the measured concentration. A Bland‐Altmann analysis of the spectral shape was performed to assess the variance of the spectral shape, independent of quantification model influences. Results For the used setup, minimal detectable changes of brain metabolite concentrations were found to be between 0.40 µmol/g and 2.23 µmol/g. CRLBs account for only 16 % to 74 % of the total variance of the metabolite concentrations. The application of gradient‐modulated inversion pulses in SPECIAL led to slightly improved repeatability, but overall reproducibility appeared to be limited by differences in positioning, calibration, and other day‐to‐day variations throughout different sessions. Conclusion A framework is introduced to estimate the precision of metabolite concentrations obtained by MRS in vivo, and the minimal detectable changes for 13 metabolite concentrations measured at 7 T using SPECIAL are obtained.
doi_str_mv 10.1002/mrm.29034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2598079436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598079436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-22ffa39e3a39725c6236ff9311b358c8a1d969d77c8af07f4ad25aba3aae78513</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EokNhwQsgS2xgkdY_SRyzq6qWVmqFhIa15Tg3HVeOHexkyuz6CH0InownwZ0UFkhs_HP16ZyrcxB6S8kRJYQdD3E4YpLw8hla0YqxglWyfI5WRJSk4FSWB-hVSreEEClF-RId8FI0nIt6hX6epAQpDeAnHHo8gE5zhP13jGBsssFj63Gy_sbBr_uHbfgBDqcRzBRDMmHcYT1hgdef8Drc6djhwXo7aIc7mDKkWwfYbLS_gbQ45FFwdsrT4E02inrKJunRZdoA3syD9riN2u6Nt3YbXqMXvXYJ3jzdh-jb-dn69KK4-vL58vTkqjC8acqCsb7XXALPh2CVqRmv-15ySlteNabRtJO17ITIz56IvtQdq3SrudYgmoryQ_Rh0R1j-D5DmtRgkwHntIcwJ5VjbYiQJa8z-v4f9DbM0eftFKsZpUxUlcjUx4UyOasUoVdjzNnEnaJEPVancnVqX11m3z0pzu0A3V_yT1cZOF6AO-tg938ldf31epH8Dc9Aptg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621127557</pqid></control><display><type>article</type><title>Assessment of measurement precision in single‐voxel spectroscopy at 7 T: Toward minimal detectable changes of metabolite concentrations in the human brain in vivo</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Riemann, Layla Tabea ; Aigner, Christoph Stefan ; Ellison, Stephen L. R. ; Brühl, Rüdiger ; Mekle, Ralf ; Schmitter, Sebastian ; Speck, Oliver ; Rose, Georg ; Ittermann, Bernd ; Fillmer, Ariane</creator><creatorcontrib>Riemann, Layla Tabea ; Aigner, Christoph Stefan ; Ellison, Stephen L. R. ; Brühl, Rüdiger ; Mekle, Ralf ; Schmitter, Sebastian ; Speck, Oliver ; Rose, Georg ; Ittermann, Bernd ; Fillmer, Ariane</creatorcontrib><description>Purpose To introduce a study design and statistical analysis framework to assess the repeatability, reproducibility, and minimal detectable changes (MDCs) of metabolite concentrations determined by in vivo MRS. Methods An unbalanced nested study design was chosen to acquire in vivo MRS data within different repeatability and reproducibility scenarios. A spin‐echo, full‐intensity acquired localized (SPECIAL) sequence was employed at 7 T utlizing three different inversion pulses: a hyperbolic secant (HS), a gradient offset independent adiabaticity (GOIA), and a wideband, uniform rate, smooth truncation (WURST) pulse. Metabolite concentrations, Cramér‐Rao lower bounds (CRLBs) and coefficients of variation (CVs) were calculated. Both Bland‐Altman analysis and a restricted maximum‐likelihood estimation (REML) analysis were performed to estimate the different variance contributions of the repeatability and reproducibility of the measured concentration. A Bland‐Altmann analysis of the spectral shape was performed to assess the variance of the spectral shape, independent of quantification model influences. Results For the used setup, minimal detectable changes of brain metabolite concentrations were found to be between 0.40 µmol/g and 2.23 µmol/g. CRLBs account for only 16 % to 74 % of the total variance of the metabolite concentrations. The application of gradient‐modulated inversion pulses in SPECIAL led to slightly improved repeatability, but overall reproducibility appeared to be limited by differences in positioning, calibration, and other day‐to‐day variations throughout different sessions. Conclusion A framework is introduced to estimate the precision of metabolite concentrations obtained by MRS in vivo, and the minimal detectable changes for 13 metabolite concentrations measured at 7 T using SPECIAL are obtained.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.29034</identifier><identifier>PMID: 34783376</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Brain ; Brain - diagnostic imaging ; Calibration ; Coefficient of variation ; CRLBs ; Humans ; In vivo methods and tests ; Inversion ; Lower bounds ; Magnetic Resonance Spectroscopy ; measurement precision ; Metabolites ; minimal detectable change ; MR spectroscopy ; Reproducibility ; Reproducibility of Results ; reproducibility/repeatability ; SPECIAL ; Spectroscopy ; Statistical analysis ; Variance</subject><ispartof>Magnetic resonance in medicine, 2022-03, Vol.87 (3), p.1119-1135</ispartof><rights>2021 Physikalisch‐Technische Bundesanstalt Berlin. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine</rights><rights>2021 Physikalisch-Technische Bundesanstalt Berlin. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-22ffa39e3a39725c6236ff9311b358c8a1d969d77c8af07f4ad25aba3aae78513</citedby><cites>FETCH-LOGICAL-c3884-22ffa39e3a39725c6236ff9311b358c8a1d969d77c8af07f4ad25aba3aae78513</cites><orcidid>0000-0002-2215-150X ; 0000-0002-3008-6656 ; 0000-0003-3333-6603 ; 0000-0002-4087-471X ; 0000-0001-5411-7288 ; 0000-0003-0111-5996 ; 0000-0001-6821-7722 ; 0000-0003-3618-9610 ; 0000-0003-4410-6790 ; 0000-0002-6019-5597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.29034$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.29034$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34783376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riemann, Layla Tabea</creatorcontrib><creatorcontrib>Aigner, Christoph Stefan</creatorcontrib><creatorcontrib>Ellison, Stephen L. R.</creatorcontrib><creatorcontrib>Brühl, Rüdiger</creatorcontrib><creatorcontrib>Mekle, Ralf</creatorcontrib><creatorcontrib>Schmitter, Sebastian</creatorcontrib><creatorcontrib>Speck, Oliver</creatorcontrib><creatorcontrib>Rose, Georg</creatorcontrib><creatorcontrib>Ittermann, Bernd</creatorcontrib><creatorcontrib>Fillmer, Ariane</creatorcontrib><title>Assessment of measurement precision in single‐voxel spectroscopy at 7 T: Toward minimal detectable changes of metabolite concentrations in the human brain in vivo</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose To introduce a study design and statistical analysis framework to assess the repeatability, reproducibility, and minimal detectable changes (MDCs) of metabolite concentrations determined by in vivo MRS. Methods An unbalanced nested study design was chosen to acquire in vivo MRS data within different repeatability and reproducibility scenarios. A spin‐echo, full‐intensity acquired localized (SPECIAL) sequence was employed at 7 T utlizing three different inversion pulses: a hyperbolic secant (HS), a gradient offset independent adiabaticity (GOIA), and a wideband, uniform rate, smooth truncation (WURST) pulse. Metabolite concentrations, Cramér‐Rao lower bounds (CRLBs) and coefficients of variation (CVs) were calculated. Both Bland‐Altman analysis and a restricted maximum‐likelihood estimation (REML) analysis were performed to estimate the different variance contributions of the repeatability and reproducibility of the measured concentration. A Bland‐Altmann analysis of the spectral shape was performed to assess the variance of the spectral shape, independent of quantification model influences. Results For the used setup, minimal detectable changes of brain metabolite concentrations were found to be between 0.40 µmol/g and 2.23 µmol/g. CRLBs account for only 16 % to 74 % of the total variance of the metabolite concentrations. The application of gradient‐modulated inversion pulses in SPECIAL led to slightly improved repeatability, but overall reproducibility appeared to be limited by differences in positioning, calibration, and other day‐to‐day variations throughout different sessions. Conclusion A framework is introduced to estimate the precision of metabolite concentrations obtained by MRS in vivo, and the minimal detectable changes for 13 metabolite concentrations measured at 7 T using SPECIAL are obtained.</description><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Calibration</subject><subject>Coefficient of variation</subject><subject>CRLBs</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Inversion</subject><subject>Lower bounds</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>measurement precision</subject><subject>Metabolites</subject><subject>minimal detectable change</subject><subject>MR spectroscopy</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>reproducibility/repeatability</subject><subject>SPECIAL</subject><subject>Spectroscopy</subject><subject>Statistical analysis</subject><subject>Variance</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAUhS0EokNhwQsgS2xgkdY_SRyzq6qWVmqFhIa15Tg3HVeOHexkyuz6CH0InownwZ0UFkhs_HP16ZyrcxB6S8kRJYQdD3E4YpLw8hla0YqxglWyfI5WRJSk4FSWB-hVSreEEClF-RId8FI0nIt6hX6epAQpDeAnHHo8gE5zhP13jGBsssFj63Gy_sbBr_uHbfgBDqcRzBRDMmHcYT1hgdef8Drc6djhwXo7aIc7mDKkWwfYbLS_gbQ45FFwdsrT4E02inrKJunRZdoA3syD9riN2u6Nt3YbXqMXvXYJ3jzdh-jb-dn69KK4-vL58vTkqjC8acqCsb7XXALPh2CVqRmv-15ySlteNabRtJO17ITIz56IvtQdq3SrudYgmoryQ_Rh0R1j-D5DmtRgkwHntIcwJ5VjbYiQJa8z-v4f9DbM0eftFKsZpUxUlcjUx4UyOasUoVdjzNnEnaJEPVancnVqX11m3z0pzu0A3V_yT1cZOF6AO-tg938ldf31epH8Dc9Aptg</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Riemann, Layla Tabea</creator><creator>Aigner, Christoph Stefan</creator><creator>Ellison, Stephen L. R.</creator><creator>Brühl, Rüdiger</creator><creator>Mekle, Ralf</creator><creator>Schmitter, Sebastian</creator><creator>Speck, Oliver</creator><creator>Rose, Georg</creator><creator>Ittermann, Bernd</creator><creator>Fillmer, Ariane</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2215-150X</orcidid><orcidid>https://orcid.org/0000-0002-3008-6656</orcidid><orcidid>https://orcid.org/0000-0003-3333-6603</orcidid><orcidid>https://orcid.org/0000-0002-4087-471X</orcidid><orcidid>https://orcid.org/0000-0001-5411-7288</orcidid><orcidid>https://orcid.org/0000-0003-0111-5996</orcidid><orcidid>https://orcid.org/0000-0001-6821-7722</orcidid><orcidid>https://orcid.org/0000-0003-3618-9610</orcidid><orcidid>https://orcid.org/0000-0003-4410-6790</orcidid><orcidid>https://orcid.org/0000-0002-6019-5597</orcidid></search><sort><creationdate>202203</creationdate><title>Assessment of measurement precision in single‐voxel spectroscopy at 7 T: Toward minimal detectable changes of metabolite concentrations in the human brain in vivo</title><author>Riemann, Layla Tabea ; Aigner, Christoph Stefan ; Ellison, Stephen L. R. ; Brühl, Rüdiger ; Mekle, Ralf ; Schmitter, Sebastian ; Speck, Oliver ; Rose, Georg ; Ittermann, Bernd ; Fillmer, Ariane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-22ffa39e3a39725c6236ff9311b358c8a1d969d77c8af07f4ad25aba3aae78513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Calibration</topic><topic>Coefficient of variation</topic><topic>CRLBs</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Inversion</topic><topic>Lower bounds</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>measurement precision</topic><topic>Metabolites</topic><topic>minimal detectable change</topic><topic>MR spectroscopy</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>reproducibility/repeatability</topic><topic>SPECIAL</topic><topic>Spectroscopy</topic><topic>Statistical analysis</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riemann, Layla Tabea</creatorcontrib><creatorcontrib>Aigner, Christoph Stefan</creatorcontrib><creatorcontrib>Ellison, Stephen L. R.</creatorcontrib><creatorcontrib>Brühl, Rüdiger</creatorcontrib><creatorcontrib>Mekle, Ralf</creatorcontrib><creatorcontrib>Schmitter, Sebastian</creatorcontrib><creatorcontrib>Speck, Oliver</creatorcontrib><creatorcontrib>Rose, Georg</creatorcontrib><creatorcontrib>Ittermann, Bernd</creatorcontrib><creatorcontrib>Fillmer, Ariane</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riemann, Layla Tabea</au><au>Aigner, Christoph Stefan</au><au>Ellison, Stephen L. R.</au><au>Brühl, Rüdiger</au><au>Mekle, Ralf</au><au>Schmitter, Sebastian</au><au>Speck, Oliver</au><au>Rose, Georg</au><au>Ittermann, Bernd</au><au>Fillmer, Ariane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of measurement precision in single‐voxel spectroscopy at 7 T: Toward minimal detectable changes of metabolite concentrations in the human brain in vivo</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2022-03</date><risdate>2022</risdate><volume>87</volume><issue>3</issue><spage>1119</spage><epage>1135</epage><pages>1119-1135</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose To introduce a study design and statistical analysis framework to assess the repeatability, reproducibility, and minimal detectable changes (MDCs) of metabolite concentrations determined by in vivo MRS. Methods An unbalanced nested study design was chosen to acquire in vivo MRS data within different repeatability and reproducibility scenarios. A spin‐echo, full‐intensity acquired localized (SPECIAL) sequence was employed at 7 T utlizing three different inversion pulses: a hyperbolic secant (HS), a gradient offset independent adiabaticity (GOIA), and a wideband, uniform rate, smooth truncation (WURST) pulse. Metabolite concentrations, Cramér‐Rao lower bounds (CRLBs) and coefficients of variation (CVs) were calculated. Both Bland‐Altman analysis and a restricted maximum‐likelihood estimation (REML) analysis were performed to estimate the different variance contributions of the repeatability and reproducibility of the measured concentration. A Bland‐Altmann analysis of the spectral shape was performed to assess the variance of the spectral shape, independent of quantification model influences. Results For the used setup, minimal detectable changes of brain metabolite concentrations were found to be between 0.40 µmol/g and 2.23 µmol/g. CRLBs account for only 16 % to 74 % of the total variance of the metabolite concentrations. The application of gradient‐modulated inversion pulses in SPECIAL led to slightly improved repeatability, but overall reproducibility appeared to be limited by differences in positioning, calibration, and other day‐to‐day variations throughout different sessions. Conclusion A framework is introduced to estimate the precision of metabolite concentrations obtained by MRS in vivo, and the minimal detectable changes for 13 metabolite concentrations measured at 7 T using SPECIAL are obtained.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34783376</pmid><doi>10.1002/mrm.29034</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2215-150X</orcidid><orcidid>https://orcid.org/0000-0002-3008-6656</orcidid><orcidid>https://orcid.org/0000-0003-3333-6603</orcidid><orcidid>https://orcid.org/0000-0002-4087-471X</orcidid><orcidid>https://orcid.org/0000-0001-5411-7288</orcidid><orcidid>https://orcid.org/0000-0003-0111-5996</orcidid><orcidid>https://orcid.org/0000-0001-6821-7722</orcidid><orcidid>https://orcid.org/0000-0003-3618-9610</orcidid><orcidid>https://orcid.org/0000-0003-4410-6790</orcidid><orcidid>https://orcid.org/0000-0002-6019-5597</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2022-03, Vol.87 (3), p.1119-1135
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_2598079436
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Brain
Brain - diagnostic imaging
Calibration
Coefficient of variation
CRLBs
Humans
In vivo methods and tests
Inversion
Lower bounds
Magnetic Resonance Spectroscopy
measurement precision
Metabolites
minimal detectable change
MR spectroscopy
Reproducibility
Reproducibility of Results
reproducibility/repeatability
SPECIAL
Spectroscopy
Statistical analysis
Variance
title Assessment of measurement precision in single‐voxel spectroscopy at 7 T: Toward minimal detectable changes of metabolite concentrations in the human brain in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20measurement%20precision%20in%20single%E2%80%90voxel%20spectroscopy%20at%207%20T:%20Toward%20minimal%20detectable%20changes%20of%20metabolite%20concentrations%20in%20the%20human%20brain%20in%20vivo&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Riemann,%20Layla%20Tabea&rft.date=2022-03&rft.volume=87&rft.issue=3&rft.spage=1119&rft.epage=1135&rft.pages=1119-1135&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.29034&rft_dat=%3Cproquest_cross%3E2598079436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621127557&rft_id=info:pmid/34783376&rfr_iscdi=true