Collective motility and mechanical waves in cell clusters

Epithelial cell clusters often move collectively on a substrate. Mechanical signals play a major role in organizing this behavior. There are a number of experimental observations in these systems which await a comprehensive explanation. These include: the internal strains are tensile even for cluste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2021-11, Vol.44 (11), p.137-137, Article 137
Hauptverfasser: Deng, Youyuan, Levine, Herbert, Mao, Xiaoming, Sander, Leonard M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue 11
container_start_page 137
container_title The European physical journal. E, Soft matter and biological physics
container_volume 44
creator Deng, Youyuan
Levine, Herbert
Mao, Xiaoming
Sander, Leonard M.
description Epithelial cell clusters often move collectively on a substrate. Mechanical signals play a major role in organizing this behavior. There are a number of experimental observations in these systems which await a comprehensive explanation. These include: the internal strains are tensile even for clusters that expand by proliferation; the tractions on the substrate are often confined to the edges of the cluster; there can exist density waves within the cluster; and for cells in an annulus, there is a transition between expanding clusters with proliferation and the case where cells fill the annulus and rotate around it. We formulate a mechanical model to examine these effects. We use a molecular clutch picture which allows “stalling”—inhibition of cell contraction by external forces. Stalled cells are passive from a physical point of view and the un-stalled cells are active. By attaching cells to the substrate and to each other, and taking into account contact inhibition of locomotion, we get a simple picture for many of these findings as well as predictions that could be tested. Graphical abstract
doi_str_mv 10.1140/epje/s10189-021-00141-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2598078621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597832572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-578f8a5fd75095987f620e7e9ad7cfa26186cb9621e98647c129a2df01b039843</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMobk7_gha88aYuSdMmuZThFwy8UfAupOmpdqTtTNrJ_r2pnRO88SoH8pz3vDwIXRB8TQjDc1ivYO4JJkLGmJIYY8JIzA_QlFBJYyHT18P9zMgEnXi_wgOFk2M0SRgXVKZyiuSitRZMV20gqtuuslW3jXRTRDWYd91URtvoU2_AR1UTGbA2Mrb3HTh_io5KbT2c7d4Zerm7fV48xMun-8fFzTI2LJFdnHJRCp2WBU9xuCh4mVEMHKQuuCk1zYjITC4zSkCKjHETSmtalJjkOJGCJTN0NeauXfvRg-9UXfmhiW6g7b2iIRRzEQICevkHXbW9a0K7geIioSmngeIjZVzrvYNSrV1Va7dVBKvBrhrsqtGuCnbVt13Fw-b5Lr_Payj2ez86AyBGwIev5g3cb4H_sr8AYKqHRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597832572</pqid></control><display><type>article</type><title>Collective motility and mechanical waves in cell clusters</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Deng, Youyuan ; Levine, Herbert ; Mao, Xiaoming ; Sander, Leonard M.</creator><creatorcontrib>Deng, Youyuan ; Levine, Herbert ; Mao, Xiaoming ; Sander, Leonard M.</creatorcontrib><description>Epithelial cell clusters often move collectively on a substrate. Mechanical signals play a major role in organizing this behavior. There are a number of experimental observations in these systems which await a comprehensive explanation. These include: the internal strains are tensile even for clusters that expand by proliferation; the tractions on the substrate are often confined to the edges of the cluster; there can exist density waves within the cluster; and for cells in an annulus, there is a transition between expanding clusters with proliferation and the case where cells fill the annulus and rotate around it. We formulate a mechanical model to examine these effects. We use a molecular clutch picture which allows “stalling”—inhibition of cell contraction by external forces. Stalled cells are passive from a physical point of view and the un-stalled cells are active. By attaching cells to the substrate and to each other, and taking into account contact inhibition of locomotion, we get a simple picture for many of these findings as well as predictions that could be tested. Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/s10189-021-00141-7</identifier><identifier>PMID: 34782959</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annuli ; Biological and Medical Physics ; Biophysics ; Cell Movement ; Clusters ; Complex Fluids and Microfluidics ; Complex Systems ; Condensed matter physics ; Contact Inhibition ; Epithelium ; Locomotion ; Models, Biological ; Nanotechnology ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article - Living Systems ; Soft and Granular Matter ; Stalling ; Substrates ; Surfaces and Interfaces ; Thin Films ; Tissue Mechanics</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2021-11, Vol.44 (11), p.137-137, Article 137</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-578f8a5fd75095987f620e7e9ad7cfa26186cb9621e98647c129a2df01b039843</citedby><cites>FETCH-LOGICAL-c439t-578f8a5fd75095987f620e7e9ad7cfa26186cb9621e98647c129a2df01b039843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/s10189-021-00141-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/s10189-021-00141-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34782959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Youyuan</creatorcontrib><creatorcontrib>Levine, Herbert</creatorcontrib><creatorcontrib>Mao, Xiaoming</creatorcontrib><creatorcontrib>Sander, Leonard M.</creatorcontrib><title>Collective motility and mechanical waves in cell clusters</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>Epithelial cell clusters often move collectively on a substrate. Mechanical signals play a major role in organizing this behavior. There are a number of experimental observations in these systems which await a comprehensive explanation. These include: the internal strains are tensile even for clusters that expand by proliferation; the tractions on the substrate are often confined to the edges of the cluster; there can exist density waves within the cluster; and for cells in an annulus, there is a transition between expanding clusters with proliferation and the case where cells fill the annulus and rotate around it. We formulate a mechanical model to examine these effects. We use a molecular clutch picture which allows “stalling”—inhibition of cell contraction by external forces. Stalled cells are passive from a physical point of view and the un-stalled cells are active. By attaching cells to the substrate and to each other, and taking into account contact inhibition of locomotion, we get a simple picture for many of these findings as well as predictions that could be tested. Graphical abstract</description><subject>Annuli</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Cell Movement</subject><subject>Clusters</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Condensed matter physics</subject><subject>Contact Inhibition</subject><subject>Epithelium</subject><subject>Locomotion</subject><subject>Models, Biological</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article - Living Systems</subject><subject>Soft and Granular Matter</subject><subject>Stalling</subject><subject>Substrates</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tissue Mechanics</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF1LwzAUhoMobk7_gha88aYuSdMmuZThFwy8UfAupOmpdqTtTNrJ_r2pnRO88SoH8pz3vDwIXRB8TQjDc1ivYO4JJkLGmJIYY8JIzA_QlFBJYyHT18P9zMgEnXi_wgOFk2M0SRgXVKZyiuSitRZMV20gqtuuslW3jXRTRDWYd91URtvoU2_AR1UTGbA2Mrb3HTh_io5KbT2c7d4Zerm7fV48xMun-8fFzTI2LJFdnHJRCp2WBU9xuCh4mVEMHKQuuCk1zYjITC4zSkCKjHETSmtalJjkOJGCJTN0NeauXfvRg-9UXfmhiW6g7b2iIRRzEQICevkHXbW9a0K7geIioSmngeIjZVzrvYNSrV1Va7dVBKvBrhrsqtGuCnbVt13Fw-b5Lr_Payj2ez86AyBGwIev5g3cb4H_sr8AYKqHRg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Deng, Youyuan</creator><creator>Levine, Herbert</creator><creator>Mao, Xiaoming</creator><creator>Sander, Leonard M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20211101</creationdate><title>Collective motility and mechanical waves in cell clusters</title><author>Deng, Youyuan ; Levine, Herbert ; Mao, Xiaoming ; Sander, Leonard M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-578f8a5fd75095987f620e7e9ad7cfa26186cb9621e98647c129a2df01b039843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annuli</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Cell Movement</topic><topic>Clusters</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Condensed matter physics</topic><topic>Contact Inhibition</topic><topic>Epithelium</topic><topic>Locomotion</topic><topic>Models, Biological</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article - Living Systems</topic><topic>Soft and Granular Matter</topic><topic>Stalling</topic><topic>Substrates</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tissue Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Youyuan</creatorcontrib><creatorcontrib>Levine, Herbert</creatorcontrib><creatorcontrib>Mao, Xiaoming</creatorcontrib><creatorcontrib>Sander, Leonard M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Youyuan</au><au>Levine, Herbert</au><au>Mao, Xiaoming</au><au>Sander, Leonard M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collective motility and mechanical waves in cell clusters</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>44</volume><issue>11</issue><spage>137</spage><epage>137</epage><pages>137-137</pages><artnum>137</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>Epithelial cell clusters often move collectively on a substrate. Mechanical signals play a major role in organizing this behavior. There are a number of experimental observations in these systems which await a comprehensive explanation. These include: the internal strains are tensile even for clusters that expand by proliferation; the tractions on the substrate are often confined to the edges of the cluster; there can exist density waves within the cluster; and for cells in an annulus, there is a transition between expanding clusters with proliferation and the case where cells fill the annulus and rotate around it. We formulate a mechanical model to examine these effects. We use a molecular clutch picture which allows “stalling”—inhibition of cell contraction by external forces. Stalled cells are passive from a physical point of view and the un-stalled cells are active. By attaching cells to the substrate and to each other, and taking into account contact inhibition of locomotion, we get a simple picture for many of these findings as well as predictions that could be tested. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34782959</pmid><doi>10.1140/epje/s10189-021-00141-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2021-11, Vol.44 (11), p.137-137, Article 137
issn 1292-8941
1292-895X
language eng
recordid cdi_proquest_miscellaneous_2598078621
source MEDLINE; SpringerLink Journals
subjects Annuli
Biological and Medical Physics
Biophysics
Cell Movement
Clusters
Complex Fluids and Microfluidics
Complex Systems
Condensed matter physics
Contact Inhibition
Epithelium
Locomotion
Models, Biological
Nanotechnology
Physics
Physics and Astronomy
Polymer Sciences
Regular Article - Living Systems
Soft and Granular Matter
Stalling
Substrates
Surfaces and Interfaces
Thin Films
Tissue Mechanics
title Collective motility and mechanical waves in cell clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collective%20motility%20and%20mechanical%20waves%20in%20cell%20clusters&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Deng,%20Youyuan&rft.date=2021-11-01&rft.volume=44&rft.issue=11&rft.spage=137&rft.epage=137&rft.pages=137-137&rft.artnum=137&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/s10189-021-00141-7&rft_dat=%3Cproquest_cross%3E2597832572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597832572&rft_id=info:pmid/34782959&rfr_iscdi=true