Biofabrication of small diameter tissue-engineered vascular grafts

Current clinical treatment strategies for the bypassing of small diameter (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2022-01, Vol.138, p.92-111
Hauptverfasser: Weekes, Angus, Bartnikowski, Nicole, Pinto, Nigel, Jenkins, Jason, Meinert, Christoph, Klein, Travis J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue
container_start_page 92
container_title Acta biomaterialia
container_volume 138
creator Weekes, Angus
Bartnikowski, Nicole
Pinto, Nigel
Jenkins, Jason
Meinert, Christoph
Klein, Travis J.
description Current clinical treatment strategies for the bypassing of small diameter (
doi_str_mv 10.1016/j.actbio.2021.11.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2598076359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706121007534</els_id><sourcerecordid>2638290574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-daf448625933927b186496ada1b452e09e61eb6eec8290a2b79b6e012a9d41253</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMofqz-A5GCFy-tmTRN0oug4hcseNFzSNPpkqVtNGkF_71ZVj148DQZeOadyUPIKdACKIjLdWHs1DhfMMqgACgosB1yCEqqXFZC7aa35CyXVMABOYpxTWmpgKl9clByqYAycUhubpzvTBOcNZPzY-a7LA6m77PWmQEnDNnkYpwxx3HlRsSAbfZhop17E7JVMN0Uj8leZ_qIJ991QV7v715uH_Pl88PT7fUyt7wSU96ajnMlWFWXZc1kA0rwWpjWQMMrhrRGAdgIRKtYTQ1rZJ269ClTtxxYVS7IxTb3Lfj3GeOkBxct9r0Z0c9Rp2RFpSjTggU5_4Ou_RzGdJ1motzkV5Inim8pG3yMATv9FtxgwqcGqjeO9VpvHeuNYw2g0zlp7Ow7fG4GbH-HfqQm4GoLYLLx4TDoaB2OFlsX0E669e7_DV_qc42G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638290574</pqid></control><display><type>article</type><title>Biofabrication of small diameter tissue-engineered vascular grafts</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Weekes, Angus ; Bartnikowski, Nicole ; Pinto, Nigel ; Jenkins, Jason ; Meinert, Christoph ; Klein, Travis J.</creator><creatorcontrib>Weekes, Angus ; Bartnikowski, Nicole ; Pinto, Nigel ; Jenkins, Jason ; Meinert, Christoph ; Klein, Travis J.</creatorcontrib><description>Current clinical treatment strategies for the bypassing of small diameter (&lt;6 mm) blood vessels in the management of cardiovascular disease frequently fail due to a lack of suitable autologous grafts, as well as infection, thrombosis, and intimal hyperplasia associated with synthetic grafts. The rapid advancement of 3D printing and regenerative medicine technologies enabling the manufacture of biological, tissue-engineered vascular grafts (TEVGs) with the ability to integrate, remodel, and repair in vivo, promises a paradigm shift in cardiovascular disease management. This review comprehensively covers current state-of-the-art biofabrication technologies for the development of biomimetic TEVGs. Various scaffold based additive manufacturing methods used in vascular tissue engineering, including 3D printing, bioprinting, electrospinning and melt electrowriting, are discussed and assessed against the biomechanical and functional requirements of human vasculature, while the efficacy of decellularization protocols currently applied to engineered and native vessels are evaluated. Further, we provide interdisciplinary insight into the outlook of regenerative medicine for the development of vascular grafts, exploring key considerations and perspectives for the successful clinical integration of evolving technologies. It is expected that continued advancements in microscale additive manufacturing, biofabrication, tissue engineering and decellularization will culminate in the development of clinically viable, off-the-shelf TEVGs for small diameter applications in the near future. Current clinical strategies for the management of cardiovascular disease using small diameter vessel bypassing procedures are inadequate, with up to 75% of synthetic grafts failing within 3 years of implantation. It is this critically important clinical problem that researchers in the field of vascular tissue engineering and regenerative medicine aim to alleviate using biofabrication methods combining additive manufacturing, biomaterials science and advanced cellular biology. While many approaches facilitate the development of bioengineered constructs which mimic the structure and function of native blood vessels, several challenges must still be overcome for clinical translation of the next generation of tissue-engineered vascular grafts. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2021.11.012</identifier><identifier>PMID: 34781026</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>3-D printers ; Additive manufacturing ; Autografts ; Biocompatible Materials ; Bioengineering ; Biofabrication ; Biomaterials ; Biomechanics ; Biomedical materials ; Biomimetics ; Bioprinting ; Blood Vessel Prosthesis ; Blood vessels ; Cardiovascular disease ; Cardiovascular diseases ; Disease management ; Grafting ; Humans ; Hyperplasia ; Manufacturing ; Medicine ; Printing, Three-Dimensional ; Production methods ; Regenerative medicine ; State-of-the-art reviews ; Structure-function relationships ; Surgical implants ; Three dimensional printing ; Thromboembolism ; Thrombosis ; Tissue Engineering ; Tissue Scaffolds ; Vascular graft bypassing ; Vascular tissue</subject><ispartof>Acta biomaterialia, 2022-01, Vol.138, p.92-111</ispartof><rights>2021 Acta Materialia Inc.</rights><rights>Copyright © 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Jan 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-daf448625933927b186496ada1b452e09e61eb6eec8290a2b79b6e012a9d41253</citedby><cites>FETCH-LOGICAL-c456t-daf448625933927b186496ada1b452e09e61eb6eec8290a2b79b6e012a9d41253</cites><orcidid>0000-0002-9306-2723 ; 0000-0002-6669-7766 ; 0000-0002-9844-5774 ; 0000-0002-7036-4067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2021.11.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34781026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weekes, Angus</creatorcontrib><creatorcontrib>Bartnikowski, Nicole</creatorcontrib><creatorcontrib>Pinto, Nigel</creatorcontrib><creatorcontrib>Jenkins, Jason</creatorcontrib><creatorcontrib>Meinert, Christoph</creatorcontrib><creatorcontrib>Klein, Travis J.</creatorcontrib><title>Biofabrication of small diameter tissue-engineered vascular grafts</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Current clinical treatment strategies for the bypassing of small diameter (&lt;6 mm) blood vessels in the management of cardiovascular disease frequently fail due to a lack of suitable autologous grafts, as well as infection, thrombosis, and intimal hyperplasia associated with synthetic grafts. The rapid advancement of 3D printing and regenerative medicine technologies enabling the manufacture of biological, tissue-engineered vascular grafts (TEVGs) with the ability to integrate, remodel, and repair in vivo, promises a paradigm shift in cardiovascular disease management. This review comprehensively covers current state-of-the-art biofabrication technologies for the development of biomimetic TEVGs. Various scaffold based additive manufacturing methods used in vascular tissue engineering, including 3D printing, bioprinting, electrospinning and melt electrowriting, are discussed and assessed against the biomechanical and functional requirements of human vasculature, while the efficacy of decellularization protocols currently applied to engineered and native vessels are evaluated. Further, we provide interdisciplinary insight into the outlook of regenerative medicine for the development of vascular grafts, exploring key considerations and perspectives for the successful clinical integration of evolving technologies. It is expected that continued advancements in microscale additive manufacturing, biofabrication, tissue engineering and decellularization will culminate in the development of clinically viable, off-the-shelf TEVGs for small diameter applications in the near future. Current clinical strategies for the management of cardiovascular disease using small diameter vessel bypassing procedures are inadequate, with up to 75% of synthetic grafts failing within 3 years of implantation. It is this critically important clinical problem that researchers in the field of vascular tissue engineering and regenerative medicine aim to alleviate using biofabrication methods combining additive manufacturing, biomaterials science and advanced cellular biology. While many approaches facilitate the development of bioengineered constructs which mimic the structure and function of native blood vessels, several challenges must still be overcome for clinical translation of the next generation of tissue-engineered vascular grafts. [Display omitted]</description><subject>3-D printers</subject><subject>Additive manufacturing</subject><subject>Autografts</subject><subject>Biocompatible Materials</subject><subject>Bioengineering</subject><subject>Biofabrication</subject><subject>Biomaterials</subject><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Bioprinting</subject><subject>Blood Vessel Prosthesis</subject><subject>Blood vessels</subject><subject>Cardiovascular disease</subject><subject>Cardiovascular diseases</subject><subject>Disease management</subject><subject>Grafting</subject><subject>Humans</subject><subject>Hyperplasia</subject><subject>Manufacturing</subject><subject>Medicine</subject><subject>Printing, Three-Dimensional</subject><subject>Production methods</subject><subject>Regenerative medicine</subject><subject>State-of-the-art reviews</subject><subject>Structure-function relationships</subject><subject>Surgical implants</subject><subject>Three dimensional printing</subject><subject>Thromboembolism</subject><subject>Thrombosis</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>Vascular graft bypassing</subject><subject>Vascular tissue</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMofqz-A5GCFy-tmTRN0oug4hcseNFzSNPpkqVtNGkF_71ZVj148DQZeOadyUPIKdACKIjLdWHs1DhfMMqgACgosB1yCEqqXFZC7aa35CyXVMABOYpxTWmpgKl9clByqYAycUhubpzvTBOcNZPzY-a7LA6m77PWmQEnDNnkYpwxx3HlRsSAbfZhop17E7JVMN0Uj8leZ_qIJ991QV7v715uH_Pl88PT7fUyt7wSU96ajnMlWFWXZc1kA0rwWpjWQMMrhrRGAdgIRKtYTQ1rZJ269ClTtxxYVS7IxTb3Lfj3GeOkBxct9r0Z0c9Rp2RFpSjTggU5_4Ou_RzGdJ1motzkV5Inim8pG3yMATv9FtxgwqcGqjeO9VpvHeuNYw2g0zlp7Ow7fG4GbH-HfqQm4GoLYLLx4TDoaB2OFlsX0E669e7_DV_qc42G</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Weekes, Angus</creator><creator>Bartnikowski, Nicole</creator><creator>Pinto, Nigel</creator><creator>Jenkins, Jason</creator><creator>Meinert, Christoph</creator><creator>Klein, Travis J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9306-2723</orcidid><orcidid>https://orcid.org/0000-0002-6669-7766</orcidid><orcidid>https://orcid.org/0000-0002-9844-5774</orcidid><orcidid>https://orcid.org/0000-0002-7036-4067</orcidid></search><sort><creationdate>20220115</creationdate><title>Biofabrication of small diameter tissue-engineered vascular grafts</title><author>Weekes, Angus ; Bartnikowski, Nicole ; Pinto, Nigel ; Jenkins, Jason ; Meinert, Christoph ; Klein, Travis J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-daf448625933927b186496ada1b452e09e61eb6eec8290a2b79b6e012a9d41253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D printers</topic><topic>Additive manufacturing</topic><topic>Autografts</topic><topic>Biocompatible Materials</topic><topic>Bioengineering</topic><topic>Biofabrication</topic><topic>Biomaterials</topic><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Bioprinting</topic><topic>Blood Vessel Prosthesis</topic><topic>Blood vessels</topic><topic>Cardiovascular disease</topic><topic>Cardiovascular diseases</topic><topic>Disease management</topic><topic>Grafting</topic><topic>Humans</topic><topic>Hyperplasia</topic><topic>Manufacturing</topic><topic>Medicine</topic><topic>Printing, Three-Dimensional</topic><topic>Production methods</topic><topic>Regenerative medicine</topic><topic>State-of-the-art reviews</topic><topic>Structure-function relationships</topic><topic>Surgical implants</topic><topic>Three dimensional printing</topic><topic>Thromboembolism</topic><topic>Thrombosis</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>Vascular graft bypassing</topic><topic>Vascular tissue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weekes, Angus</creatorcontrib><creatorcontrib>Bartnikowski, Nicole</creatorcontrib><creatorcontrib>Pinto, Nigel</creatorcontrib><creatorcontrib>Jenkins, Jason</creatorcontrib><creatorcontrib>Meinert, Christoph</creatorcontrib><creatorcontrib>Klein, Travis J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weekes, Angus</au><au>Bartnikowski, Nicole</au><au>Pinto, Nigel</au><au>Jenkins, Jason</au><au>Meinert, Christoph</au><au>Klein, Travis J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biofabrication of small diameter tissue-engineered vascular grafts</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2022-01-15</date><risdate>2022</risdate><volume>138</volume><spage>92</spage><epage>111</epage><pages>92-111</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Current clinical treatment strategies for the bypassing of small diameter (&lt;6 mm) blood vessels in the management of cardiovascular disease frequently fail due to a lack of suitable autologous grafts, as well as infection, thrombosis, and intimal hyperplasia associated with synthetic grafts. The rapid advancement of 3D printing and regenerative medicine technologies enabling the manufacture of biological, tissue-engineered vascular grafts (TEVGs) with the ability to integrate, remodel, and repair in vivo, promises a paradigm shift in cardiovascular disease management. This review comprehensively covers current state-of-the-art biofabrication technologies for the development of biomimetic TEVGs. Various scaffold based additive manufacturing methods used in vascular tissue engineering, including 3D printing, bioprinting, electrospinning and melt electrowriting, are discussed and assessed against the biomechanical and functional requirements of human vasculature, while the efficacy of decellularization protocols currently applied to engineered and native vessels are evaluated. Further, we provide interdisciplinary insight into the outlook of regenerative medicine for the development of vascular grafts, exploring key considerations and perspectives for the successful clinical integration of evolving technologies. It is expected that continued advancements in microscale additive manufacturing, biofabrication, tissue engineering and decellularization will culminate in the development of clinically viable, off-the-shelf TEVGs for small diameter applications in the near future. Current clinical strategies for the management of cardiovascular disease using small diameter vessel bypassing procedures are inadequate, with up to 75% of synthetic grafts failing within 3 years of implantation. It is this critically important clinical problem that researchers in the field of vascular tissue engineering and regenerative medicine aim to alleviate using biofabrication methods combining additive manufacturing, biomaterials science and advanced cellular biology. While many approaches facilitate the development of bioengineered constructs which mimic the structure and function of native blood vessels, several challenges must still be overcome for clinical translation of the next generation of tissue-engineered vascular grafts. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34781026</pmid><doi>10.1016/j.actbio.2021.11.012</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9306-2723</orcidid><orcidid>https://orcid.org/0000-0002-6669-7766</orcidid><orcidid>https://orcid.org/0000-0002-9844-5774</orcidid><orcidid>https://orcid.org/0000-0002-7036-4067</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2022-01, Vol.138, p.92-111
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_2598076359
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects 3-D printers
Additive manufacturing
Autografts
Biocompatible Materials
Bioengineering
Biofabrication
Biomaterials
Biomechanics
Biomedical materials
Biomimetics
Bioprinting
Blood Vessel Prosthesis
Blood vessels
Cardiovascular disease
Cardiovascular diseases
Disease management
Grafting
Humans
Hyperplasia
Manufacturing
Medicine
Printing, Three-Dimensional
Production methods
Regenerative medicine
State-of-the-art reviews
Structure-function relationships
Surgical implants
Three dimensional printing
Thromboembolism
Thrombosis
Tissue Engineering
Tissue Scaffolds
Vascular graft bypassing
Vascular tissue
title Biofabrication of small diameter tissue-engineered vascular grafts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biofabrication%20of%20small%20diameter%20tissue-engineered%20vascular%20grafts&rft.jtitle=Acta%20biomaterialia&rft.au=Weekes,%20Angus&rft.date=2022-01-15&rft.volume=138&rft.spage=92&rft.epage=111&rft.pages=92-111&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2021.11.012&rft_dat=%3Cproquest_cross%3E2638290574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638290574&rft_id=info:pmid/34781026&rft_els_id=S1742706121007534&rfr_iscdi=true