Open-source Toolkit: Benchtop Carbon Fiber Microelectrode Array for Nerve Recording

Conventional peripheral nerve probes are primarily fabricated in a cleanroom, requiring the use of multiple expensive and highly specialized tools. This paper presents a cleanroom "light" fabrication process of carbon fiber neural electrode arrays that can be learned quickly by an inexperi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Visualized Experiments 2021-10 (176)
Hauptverfasser: Richie, Julianna M., Patel, Paras R., Welle, Elissa J., Dong, Tianshu, Chen, Lei, Shih, Albert J., Chestek, Cynthia A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 176
container_start_page
container_title Journal of Visualized Experiments
container_volume
creator Richie, Julianna M.
Patel, Paras R.
Welle, Elissa J.
Dong, Tianshu
Chen, Lei
Shih, Albert J.
Chestek, Cynthia A.
description Conventional peripheral nerve probes are primarily fabricated in a cleanroom, requiring the use of multiple expensive and highly specialized tools. This paper presents a cleanroom "light" fabrication process of carbon fiber neural electrode arrays that can be learned quickly by an inexperienced cleanroom user. This carbon fiber electrode array fabrication process requires just one cleanroom tool, a Parylene C deposition machine, that can be learned quickly or outsourced to a commercial processing facility at marginal cost. This fabrication process also includes hand-populating printed circuit boards, insulation, and tip optimization. The three different tip optimizations explored here (Nd:YAG laser, blowtorch, and UV laser) result in a range of tip geometries and 1 kHz impedances, with blowtorched fibers resulting in the lowest impedance. While previous experiments have proven laser and blowtorch electrode efficacy, this paper also shows that UV laser-cut fibers can record neural signals in vivo. Existing carbon fiber arrays either do not have individuated electrodes in favor of bundles or require cleanroom fabricated guides for population and insulation. The proposed arrays use only tools that can be used at a benchtop for fiber population. This carbon fiber electrode array fabrication process allows for quick customization of bulk array fabrication at a reduced price compared to commercially available probes.
doi_str_mv 10.3791/63099
format Article
fullrecord <record><control><sourceid>proquest_223</sourceid><recordid>TN_cdi_proquest_miscellaneous_2597818434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597818434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-398f458fd29efc34996dda7aefa9b38e4ed629e4890ea829154ddc4ec335dfbd3</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4Mobs59AQ-Si-Clmi5pm3ibw6mgDnSCt5ImL9rZNTVpB_v2RjfFm6f34P3-f3g_hIYxOaOZiM9TSoTYQf1YMBIRnr3s_tl76MD7BSHpiCR8H_UoyzLBWNxHT7MG6sjbzinAc2ur97K9wJdQq7fWNngiXWFrPC0LcPi-VM5CBap1VgMeOyfX2FiHH8CtAD-Csk6X9esh2jOy8jDczgF6nl7NJzfR3ez6djK-ixRNSRtRwQ1LuNEjAUZRJkSqtcwkGCkKyoGBTsOJcUFA8pGIE6a1YqAoTbQpNB2g001v4-xHB77Nl6VXUFWyBtv5fJSmwQlhgvyPJiLjMWeUBfRkg4ZnvXdg8saVS-nWeUzyL9X5t-rAHW8ru2IJ-pf6cRuAow2wsCvIF0FxHWxs05_fiIE2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597818434</pqid></control><display><type>article</type><title>Open-source Toolkit: Benchtop Carbon Fiber Microelectrode Array for Nerve Recording</title><source>Journal of Visualized Experiments : JoVE</source><creator>Richie, Julianna M. ; Patel, Paras R. ; Welle, Elissa J. ; Dong, Tianshu ; Chen, Lei ; Shih, Albert J. ; Chestek, Cynthia A.</creator><creatorcontrib>Richie, Julianna M. ; Patel, Paras R. ; Welle, Elissa J. ; Dong, Tianshu ; Chen, Lei ; Shih, Albert J. ; Chestek, Cynthia A.</creatorcontrib><description>Conventional peripheral nerve probes are primarily fabricated in a cleanroom, requiring the use of multiple expensive and highly specialized tools. This paper presents a cleanroom "light" fabrication process of carbon fiber neural electrode arrays that can be learned quickly by an inexperienced cleanroom user. This carbon fiber electrode array fabrication process requires just one cleanroom tool, a Parylene C deposition machine, that can be learned quickly or outsourced to a commercial processing facility at marginal cost. This fabrication process also includes hand-populating printed circuit boards, insulation, and tip optimization. The three different tip optimizations explored here (Nd:YAG laser, blowtorch, and UV laser) result in a range of tip geometries and 1 kHz impedances, with blowtorched fibers resulting in the lowest impedance. While previous experiments have proven laser and blowtorch electrode efficacy, this paper also shows that UV laser-cut fibers can record neural signals in vivo. Existing carbon fiber arrays either do not have individuated electrodes in favor of bundles or require cleanroom fabricated guides for population and insulation. The proposed arrays use only tools that can be used at a benchtop for fiber population. This carbon fiber electrode array fabrication process allows for quick customization of bulk array fabrication at a reduced price compared to commercially available probes.</description><identifier>ISSN: 1940-087X</identifier><identifier>EISSN: 1940-087X</identifier><identifier>DOI: 10.3791/63099</identifier><identifier>PMID: 34779441</identifier><language>eng</language><publisher>United States: MyJove Corporation</publisher><subject>Bioengineering ; Carbon ; Carbon Fiber ; carbon fibers ; Electric Impedance ; electrodes ; Electrodes, Implanted ; insulating materials ; Microelectrodes ; nerve tissue ; Peripheral Nerves ; prices</subject><ispartof>Journal of Visualized Experiments, 2021-10 (176)</ispartof><rights>Copyright © 2021, Journal of Visualized Experiments</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-398f458fd29efc34996dda7aefa9b38e4ed629e4890ea829154ddc4ec335dfbd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.jove.com/files/email_thumbs/63099.png</thumbnail><link.rule.ids>314,777,781,3830,27905,27906</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.3791/63099$$EView_record_in_Journal_of_Visualized_Experiments$$FView_record_in_$$GJournal_of_Visualized_Experiments</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34779441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Richie, Julianna M.</creatorcontrib><creatorcontrib>Patel, Paras R.</creatorcontrib><creatorcontrib>Welle, Elissa J.</creatorcontrib><creatorcontrib>Dong, Tianshu</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Shih, Albert J.</creatorcontrib><creatorcontrib>Chestek, Cynthia A.</creatorcontrib><title>Open-source Toolkit: Benchtop Carbon Fiber Microelectrode Array for Nerve Recording</title><title>Journal of Visualized Experiments</title><addtitle>J Vis Exp</addtitle><description>Conventional peripheral nerve probes are primarily fabricated in a cleanroom, requiring the use of multiple expensive and highly specialized tools. This paper presents a cleanroom "light" fabrication process of carbon fiber neural electrode arrays that can be learned quickly by an inexperienced cleanroom user. This carbon fiber electrode array fabrication process requires just one cleanroom tool, a Parylene C deposition machine, that can be learned quickly or outsourced to a commercial processing facility at marginal cost. This fabrication process also includes hand-populating printed circuit boards, insulation, and tip optimization. The three different tip optimizations explored here (Nd:YAG laser, blowtorch, and UV laser) result in a range of tip geometries and 1 kHz impedances, with blowtorched fibers resulting in the lowest impedance. While previous experiments have proven laser and blowtorch electrode efficacy, this paper also shows that UV laser-cut fibers can record neural signals in vivo. Existing carbon fiber arrays either do not have individuated electrodes in favor of bundles or require cleanroom fabricated guides for population and insulation. The proposed arrays use only tools that can be used at a benchtop for fiber population. This carbon fiber electrode array fabrication process allows for quick customization of bulk array fabrication at a reduced price compared to commercially available probes.</description><subject>Bioengineering</subject><subject>Carbon</subject><subject>Carbon Fiber</subject><subject>carbon fibers</subject><subject>Electric Impedance</subject><subject>electrodes</subject><subject>Electrodes, Implanted</subject><subject>insulating materials</subject><subject>Microelectrodes</subject><subject>nerve tissue</subject><subject>Peripheral Nerves</subject><subject>prices</subject><issn>1940-087X</issn><issn>1940-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFLwzAUx4Mobs59AQ-Si-Clmi5pm3ibw6mgDnSCt5ImL9rZNTVpB_v2RjfFm6f34P3-f3g_hIYxOaOZiM9TSoTYQf1YMBIRnr3s_tl76MD7BSHpiCR8H_UoyzLBWNxHT7MG6sjbzinAc2ur97K9wJdQq7fWNngiXWFrPC0LcPi-VM5CBap1VgMeOyfX2FiHH8CtAD-Csk6X9esh2jOy8jDczgF6nl7NJzfR3ez6djK-ixRNSRtRwQ1LuNEjAUZRJkSqtcwkGCkKyoGBTsOJcUFA8pGIE6a1YqAoTbQpNB2g001v4-xHB77Nl6VXUFWyBtv5fJSmwQlhgvyPJiLjMWeUBfRkg4ZnvXdg8saVS-nWeUzyL9X5t-rAHW8ru2IJ-pf6cRuAow2wsCvIF0FxHWxs05_fiIE2</recordid><startdate>20211029</startdate><enddate>20211029</enddate><creator>Richie, Julianna M.</creator><creator>Patel, Paras R.</creator><creator>Welle, Elissa J.</creator><creator>Dong, Tianshu</creator><creator>Chen, Lei</creator><creator>Shih, Albert J.</creator><creator>Chestek, Cynthia A.</creator><general>MyJove Corporation</general><scope>ALKRA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20211029</creationdate><title>Open-source Toolkit: Benchtop Carbon Fiber Microelectrode Array for Nerve Recording</title><author>Richie, Julianna M. ; Patel, Paras R. ; Welle, Elissa J. ; Dong, Tianshu ; Chen, Lei ; Shih, Albert J. ; Chestek, Cynthia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-398f458fd29efc34996dda7aefa9b38e4ed629e4890ea829154ddc4ec335dfbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioengineering</topic><topic>Carbon</topic><topic>Carbon Fiber</topic><topic>carbon fibers</topic><topic>Electric Impedance</topic><topic>electrodes</topic><topic>Electrodes, Implanted</topic><topic>insulating materials</topic><topic>Microelectrodes</topic><topic>nerve tissue</topic><topic>Peripheral Nerves</topic><topic>prices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richie, Julianna M.</creatorcontrib><creatorcontrib>Patel, Paras R.</creatorcontrib><creatorcontrib>Welle, Elissa J.</creatorcontrib><creatorcontrib>Dong, Tianshu</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Shih, Albert J.</creatorcontrib><creatorcontrib>Chestek, Cynthia A.</creatorcontrib><collection>JoVE Journal: Bioengineering</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of Visualized Experiments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Richie, Julianna M.</au><au>Patel, Paras R.</au><au>Welle, Elissa J.</au><au>Dong, Tianshu</au><au>Chen, Lei</au><au>Shih, Albert J.</au><au>Chestek, Cynthia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open-source Toolkit: Benchtop Carbon Fiber Microelectrode Array for Nerve Recording</atitle><jtitle>Journal of Visualized Experiments</jtitle><addtitle>J Vis Exp</addtitle><date>2021-10-29</date><risdate>2021</risdate><issue>176</issue><issn>1940-087X</issn><eissn>1940-087X</eissn><abstract>Conventional peripheral nerve probes are primarily fabricated in a cleanroom, requiring the use of multiple expensive and highly specialized tools. This paper presents a cleanroom "light" fabrication process of carbon fiber neural electrode arrays that can be learned quickly by an inexperienced cleanroom user. This carbon fiber electrode array fabrication process requires just one cleanroom tool, a Parylene C deposition machine, that can be learned quickly or outsourced to a commercial processing facility at marginal cost. This fabrication process also includes hand-populating printed circuit boards, insulation, and tip optimization. The three different tip optimizations explored here (Nd:YAG laser, blowtorch, and UV laser) result in a range of tip geometries and 1 kHz impedances, with blowtorched fibers resulting in the lowest impedance. While previous experiments have proven laser and blowtorch electrode efficacy, this paper also shows that UV laser-cut fibers can record neural signals in vivo. Existing carbon fiber arrays either do not have individuated electrodes in favor of bundles or require cleanroom fabricated guides for population and insulation. The proposed arrays use only tools that can be used at a benchtop for fiber population. This carbon fiber electrode array fabrication process allows for quick customization of bulk array fabrication at a reduced price compared to commercially available probes.</abstract><cop>United States</cop><pub>MyJove Corporation</pub><pmid>34779441</pmid><doi>10.3791/63099</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1940-087X
ispartof Journal of Visualized Experiments, 2021-10 (176)
issn 1940-087X
1940-087X
language eng
recordid cdi_proquest_miscellaneous_2597818434
source Journal of Visualized Experiments : JoVE
subjects Bioengineering
Carbon
Carbon Fiber
carbon fibers
Electric Impedance
electrodes
Electrodes, Implanted
insulating materials
Microelectrodes
nerve tissue
Peripheral Nerves
prices
title Open-source Toolkit: Benchtop Carbon Fiber Microelectrode Array for Nerve Recording
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_223&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open-source%20Toolkit:%20Benchtop%20Carbon%20Fiber%20Microelectrode%20Array%20for%20Nerve%20Recording&rft.jtitle=Journal%20of%20Visualized%20Experiments&rft.au=Richie,%20Julianna%20M.&rft.date=2021-10-29&rft.issue=176&rft.issn=1940-087X&rft.eissn=1940-087X&rft_id=info:doi/10.3791/63099&rft_dat=%3Cproquest_223%3E2597818434%3C/proquest_223%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597818434&rft_id=info:pmid/34779441&rfr_iscdi=true