Open-source Toolkit: Benchtop Carbon Fiber Microelectrode Array for Nerve Recording
Conventional peripheral nerve probes are primarily fabricated in a cleanroom, requiring the use of multiple expensive and highly specialized tools. This paper presents a cleanroom "light" fabrication process of carbon fiber neural electrode arrays that can be learned quickly by an inexperi...
Gespeichert in:
Veröffentlicht in: | Journal of Visualized Experiments 2021-10 (176) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 176 |
container_start_page | |
container_title | Journal of Visualized Experiments |
container_volume | |
creator | Richie, Julianna M. Patel, Paras R. Welle, Elissa J. Dong, Tianshu Chen, Lei Shih, Albert J. Chestek, Cynthia A. |
description | Conventional peripheral nerve probes are primarily fabricated in a cleanroom, requiring the use of multiple expensive and highly specialized tools. This paper presents a cleanroom "light" fabrication process of carbon fiber neural electrode arrays that can be learned quickly by an inexperienced cleanroom user. This carbon fiber electrode array fabrication process requires just one cleanroom tool, a Parylene C deposition machine, that can be learned quickly or outsourced to a commercial processing facility at marginal cost. This fabrication process also includes hand-populating printed circuit boards, insulation, and tip optimization. The three different tip optimizations explored here (Nd:YAG laser, blowtorch, and UV laser) result in a range of tip geometries and 1 kHz impedances, with blowtorched fibers resulting in the lowest impedance. While previous experiments have proven laser and blowtorch electrode efficacy, this paper also shows that UV laser-cut fibers can record neural signals in vivo. Existing carbon fiber arrays either do not have individuated electrodes in favor of bundles or require cleanroom fabricated guides for population and insulation. The proposed arrays use only tools that can be used at a benchtop for fiber population. This carbon fiber electrode array fabrication process allows for quick customization of bulk array fabrication at a reduced price compared to commercially available probes. |
doi_str_mv | 10.3791/63099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_223</sourceid><recordid>TN_cdi_proquest_miscellaneous_2597818434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597818434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-398f458fd29efc34996dda7aefa9b38e4ed629e4890ea829154ddc4ec335dfbd3</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4Mobs59AQ-Si-Clmi5pm3ibw6mgDnSCt5ImL9rZNTVpB_v2RjfFm6f34P3-f3g_hIYxOaOZiM9TSoTYQf1YMBIRnr3s_tl76MD7BSHpiCR8H_UoyzLBWNxHT7MG6sjbzinAc2ur97K9wJdQq7fWNngiXWFrPC0LcPi-VM5CBap1VgMeOyfX2FiHH8CtAD-Csk6X9esh2jOy8jDczgF6nl7NJzfR3ez6djK-ixRNSRtRwQ1LuNEjAUZRJkSqtcwkGCkKyoGBTsOJcUFA8pGIE6a1YqAoTbQpNB2g001v4-xHB77Nl6VXUFWyBtv5fJSmwQlhgvyPJiLjMWeUBfRkg4ZnvXdg8saVS-nWeUzyL9X5t-rAHW8ru2IJ-pf6cRuAow2wsCvIF0FxHWxs05_fiIE2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597818434</pqid></control><display><type>article</type><title>Open-source Toolkit: Benchtop Carbon Fiber Microelectrode Array for Nerve Recording</title><source>Journal of Visualized Experiments : JoVE</source><creator>Richie, Julianna M. ; Patel, Paras R. ; Welle, Elissa J. ; Dong, Tianshu ; Chen, Lei ; Shih, Albert J. ; Chestek, Cynthia A.</creator><creatorcontrib>Richie, Julianna M. ; Patel, Paras R. ; Welle, Elissa J. ; Dong, Tianshu ; Chen, Lei ; Shih, Albert J. ; Chestek, Cynthia A.</creatorcontrib><description>Conventional peripheral nerve probes are primarily fabricated in a cleanroom, requiring the use of multiple expensive and highly specialized tools. This paper presents a cleanroom "light" fabrication process of carbon fiber neural electrode arrays that can be learned quickly by an inexperienced cleanroom user. This carbon fiber electrode array fabrication process requires just one cleanroom tool, a Parylene C deposition machine, that can be learned quickly or outsourced to a commercial processing facility at marginal cost. This fabrication process also includes hand-populating printed circuit boards, insulation, and tip optimization. The three different tip optimizations explored here (Nd:YAG laser, blowtorch, and UV laser) result in a range of tip geometries and 1 kHz impedances, with blowtorched fibers resulting in the lowest impedance. While previous experiments have proven laser and blowtorch electrode efficacy, this paper also shows that UV laser-cut fibers can record neural signals in vivo. Existing carbon fiber arrays either do not have individuated electrodes in favor of bundles or require cleanroom fabricated guides for population and insulation. The proposed arrays use only tools that can be used at a benchtop for fiber population. This carbon fiber electrode array fabrication process allows for quick customization of bulk array fabrication at a reduced price compared to commercially available probes.</description><identifier>ISSN: 1940-087X</identifier><identifier>EISSN: 1940-087X</identifier><identifier>DOI: 10.3791/63099</identifier><identifier>PMID: 34779441</identifier><language>eng</language><publisher>United States: MyJove Corporation</publisher><subject>Bioengineering ; Carbon ; Carbon Fiber ; carbon fibers ; Electric Impedance ; electrodes ; Electrodes, Implanted ; insulating materials ; Microelectrodes ; nerve tissue ; Peripheral Nerves ; prices</subject><ispartof>Journal of Visualized Experiments, 2021-10 (176)</ispartof><rights>Copyright © 2021, Journal of Visualized Experiments</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-398f458fd29efc34996dda7aefa9b38e4ed629e4890ea829154ddc4ec335dfbd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.jove.com/files/email_thumbs/63099.png</thumbnail><link.rule.ids>314,777,781,3830,27905,27906</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.3791/63099$$EView_record_in_Journal_of_Visualized_Experiments$$FView_record_in_$$GJournal_of_Visualized_Experiments</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34779441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Richie, Julianna M.</creatorcontrib><creatorcontrib>Patel, Paras R.</creatorcontrib><creatorcontrib>Welle, Elissa J.</creatorcontrib><creatorcontrib>Dong, Tianshu</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Shih, Albert J.</creatorcontrib><creatorcontrib>Chestek, Cynthia A.</creatorcontrib><title>Open-source Toolkit: Benchtop Carbon Fiber Microelectrode Array for Nerve Recording</title><title>Journal of Visualized Experiments</title><addtitle>J Vis Exp</addtitle><description>Conventional peripheral nerve probes are primarily fabricated in a cleanroom, requiring the use of multiple expensive and highly specialized tools. This paper presents a cleanroom "light" fabrication process of carbon fiber neural electrode arrays that can be learned quickly by an inexperienced cleanroom user. This carbon fiber electrode array fabrication process requires just one cleanroom tool, a Parylene C deposition machine, that can be learned quickly or outsourced to a commercial processing facility at marginal cost. This fabrication process also includes hand-populating printed circuit boards, insulation, and tip optimization. The three different tip optimizations explored here (Nd:YAG laser, blowtorch, and UV laser) result in a range of tip geometries and 1 kHz impedances, with blowtorched fibers resulting in the lowest impedance. While previous experiments have proven laser and blowtorch electrode efficacy, this paper also shows that UV laser-cut fibers can record neural signals in vivo. Existing carbon fiber arrays either do not have individuated electrodes in favor of bundles or require cleanroom fabricated guides for population and insulation. The proposed arrays use only tools that can be used at a benchtop for fiber population. This carbon fiber electrode array fabrication process allows for quick customization of bulk array fabrication at a reduced price compared to commercially available probes.</description><subject>Bioengineering</subject><subject>Carbon</subject><subject>Carbon Fiber</subject><subject>carbon fibers</subject><subject>Electric Impedance</subject><subject>electrodes</subject><subject>Electrodes, Implanted</subject><subject>insulating materials</subject><subject>Microelectrodes</subject><subject>nerve tissue</subject><subject>Peripheral Nerves</subject><subject>prices</subject><issn>1940-087X</issn><issn>1940-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFLwzAUx4Mobs59AQ-Si-Clmi5pm3ibw6mgDnSCt5ImL9rZNTVpB_v2RjfFm6f34P3-f3g_hIYxOaOZiM9TSoTYQf1YMBIRnr3s_tl76MD7BSHpiCR8H_UoyzLBWNxHT7MG6sjbzinAc2ur97K9wJdQq7fWNngiXWFrPC0LcPi-VM5CBap1VgMeOyfX2FiHH8CtAD-Csk6X9esh2jOy8jDczgF6nl7NJzfR3ez6djK-ixRNSRtRwQ1LuNEjAUZRJkSqtcwkGCkKyoGBTsOJcUFA8pGIE6a1YqAoTbQpNB2g001v4-xHB77Nl6VXUFWyBtv5fJSmwQlhgvyPJiLjMWeUBfRkg4ZnvXdg8saVS-nWeUzyL9X5t-rAHW8ru2IJ-pf6cRuAow2wsCvIF0FxHWxs05_fiIE2</recordid><startdate>20211029</startdate><enddate>20211029</enddate><creator>Richie, Julianna M.</creator><creator>Patel, Paras R.</creator><creator>Welle, Elissa J.</creator><creator>Dong, Tianshu</creator><creator>Chen, Lei</creator><creator>Shih, Albert J.</creator><creator>Chestek, Cynthia A.</creator><general>MyJove Corporation</general><scope>ALKRA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20211029</creationdate><title>Open-source Toolkit: Benchtop Carbon Fiber Microelectrode Array for Nerve Recording</title><author>Richie, Julianna M. ; Patel, Paras R. ; Welle, Elissa J. ; Dong, Tianshu ; Chen, Lei ; Shih, Albert J. ; Chestek, Cynthia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-398f458fd29efc34996dda7aefa9b38e4ed629e4890ea829154ddc4ec335dfbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioengineering</topic><topic>Carbon</topic><topic>Carbon Fiber</topic><topic>carbon fibers</topic><topic>Electric Impedance</topic><topic>electrodes</topic><topic>Electrodes, Implanted</topic><topic>insulating materials</topic><topic>Microelectrodes</topic><topic>nerve tissue</topic><topic>Peripheral Nerves</topic><topic>prices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richie, Julianna M.</creatorcontrib><creatorcontrib>Patel, Paras R.</creatorcontrib><creatorcontrib>Welle, Elissa J.</creatorcontrib><creatorcontrib>Dong, Tianshu</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Shih, Albert J.</creatorcontrib><creatorcontrib>Chestek, Cynthia A.</creatorcontrib><collection>JoVE Journal: Bioengineering</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of Visualized Experiments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Richie, Julianna M.</au><au>Patel, Paras R.</au><au>Welle, Elissa J.</au><au>Dong, Tianshu</au><au>Chen, Lei</au><au>Shih, Albert J.</au><au>Chestek, Cynthia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open-source Toolkit: Benchtop Carbon Fiber Microelectrode Array for Nerve Recording</atitle><jtitle>Journal of Visualized Experiments</jtitle><addtitle>J Vis Exp</addtitle><date>2021-10-29</date><risdate>2021</risdate><issue>176</issue><issn>1940-087X</issn><eissn>1940-087X</eissn><abstract>Conventional peripheral nerve probes are primarily fabricated in a cleanroom, requiring the use of multiple expensive and highly specialized tools. This paper presents a cleanroom "light" fabrication process of carbon fiber neural electrode arrays that can be learned quickly by an inexperienced cleanroom user. This carbon fiber electrode array fabrication process requires just one cleanroom tool, a Parylene C deposition machine, that can be learned quickly or outsourced to a commercial processing facility at marginal cost. This fabrication process also includes hand-populating printed circuit boards, insulation, and tip optimization. The three different tip optimizations explored here (Nd:YAG laser, blowtorch, and UV laser) result in a range of tip geometries and 1 kHz impedances, with blowtorched fibers resulting in the lowest impedance. While previous experiments have proven laser and blowtorch electrode efficacy, this paper also shows that UV laser-cut fibers can record neural signals in vivo. Existing carbon fiber arrays either do not have individuated electrodes in favor of bundles or require cleanroom fabricated guides for population and insulation. The proposed arrays use only tools that can be used at a benchtop for fiber population. This carbon fiber electrode array fabrication process allows for quick customization of bulk array fabrication at a reduced price compared to commercially available probes.</abstract><cop>United States</cop><pub>MyJove Corporation</pub><pmid>34779441</pmid><doi>10.3791/63099</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1940-087X |
ispartof | Journal of Visualized Experiments, 2021-10 (176) |
issn | 1940-087X 1940-087X |
language | eng |
recordid | cdi_proquest_miscellaneous_2597818434 |
source | Journal of Visualized Experiments : JoVE |
subjects | Bioengineering Carbon Carbon Fiber carbon fibers Electric Impedance electrodes Electrodes, Implanted insulating materials Microelectrodes nerve tissue Peripheral Nerves prices |
title | Open-source Toolkit: Benchtop Carbon Fiber Microelectrode Array for Nerve Recording |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_223&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open-source%20Toolkit:%20Benchtop%20Carbon%20Fiber%20Microelectrode%20Array%20for%20Nerve%20Recording&rft.jtitle=Journal%20of%20Visualized%20Experiments&rft.au=Richie,%20Julianna%20M.&rft.date=2021-10-29&rft.issue=176&rft.issn=1940-087X&rft.eissn=1940-087X&rft_id=info:doi/10.3791/63099&rft_dat=%3Cproquest_223%3E2597818434%3C/proquest_223%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597818434&rft_id=info:pmid/34779441&rfr_iscdi=true |