Use of a classifier in a knowledge-based simulation optimization system
This article defines and develops a simulation optimization system based upon response surface classification and the integration of multiple search strategies. Response surfaces are classified according to characteristics that indicate which search technique will be most successful. Typical surface...
Gespeichert in:
Veröffentlicht in: | Naval research logistics 1995-12, Vol.42 (8), p.1203-1232 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1232 |
---|---|
container_issue | 8 |
container_start_page | 1203 |
container_title | Naval research logistics |
container_volume | 42 |
creator | Crouch, Ingrid W. M. Greenwood, Allen G. Rees, Loren Paul |
description | This article defines and develops a simulation optimization system based upon response surface classification and the integration of multiple search strategies. Response surfaces are classified according to characteristics that indicate which search technique will be most successful. Typical surface characteristics include statistical measures and topological features, while search techniques encompass response surface methodology, simulated annealing, random search, etc. The classify‐then‐search process flow and a knowledge‐based architecture are developed and then demonstrated with a detailed computer example. The system is useful not only as an approach to optimizing simulations, but also as a means for integrating search techniques and thereby providing the user with the most promising path toward an optimal solution. © 1995 John Wiley & Sons, Inc. |
doi_str_mv | 10.1002/1520-6750(199512)42:8<1203::AID-NAV3220420807>3.0.CO;2-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25978123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25978123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4237-d5510266f780d54932bc8635fde8ff03f2599c96cb3e2177aa2a1770f4f0259f3</originalsourceid><addsrcrecordid>eNqVkU1vEzEQhi0EEqHwH_aAEBycjsfr3XVAiLAtSaWquVDIbeTs2sh0P8I6UQm_HkdbReoFidNo5Mfvaz1m7JOAqQDAc6EQeJYreCu0VgLfpTgrPggEOZvNry74zfybRIQUoYD8o5zCtFy9R148YZPT1adsAoVOOWR6_Zy9COEnAGQpqAlb3Aab9C4xSdWYELzzdkh8F_e7rr9vbP3D8o0Jtk6Cb_eN2fm-S_rtzrf-z7iEQ9jZ9iV75kwT7KuHecZuv1x-LZf8erW4KufXvEpR5rxWSgBmmcsLqFWqJW6qIpPK1bZwDqRDpXWls2ojLYo8NwZNHOBSB_HIyTP2ZszdDv2vvQ07an2obNOYzvb7QBHKC4EygusRrIY-hME62g6-NcOBBNDRLB310FEPjWYpRSroaJYomqVHZkkSULmiiMTo1w9vMKEyjRtMV_lwykctYqqO2GbE7n1jD_9T_6_2xwexhI8lPv7C71OJGe5itswVfb9Z0PJCLrH8vCaUfwG5lqd2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25978123</pqid></control><display><type>article</type><title>Use of a classifier in a knowledge-based simulation optimization system</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Crouch, Ingrid W. M. ; Greenwood, Allen G. ; Rees, Loren Paul</creator><creatorcontrib>Crouch, Ingrid W. M. ; Greenwood, Allen G. ; Rees, Loren Paul</creatorcontrib><description>This article defines and develops a simulation optimization system based upon response surface classification and the integration of multiple search strategies. Response surfaces are classified according to characteristics that indicate which search technique will be most successful. Typical surface characteristics include statistical measures and topological features, while search techniques encompass response surface methodology, simulated annealing, random search, etc. The classify‐then‐search process flow and a knowledge‐based architecture are developed and then demonstrated with a detailed computer example. The system is useful not only as an approach to optimizing simulations, but also as a means for integrating search techniques and thereby providing the user with the most promising path toward an optimal solution. © 1995 John Wiley & Sons, Inc.</description><identifier>ISSN: 0894-069X</identifier><identifier>EISSN: 1520-6750</identifier><identifier>DOI: 10.1002/1520-6750(199512)42:8<1203::AID-NAV3220420807>3.0.CO;2-8</identifier><identifier>CODEN: NRLQAR</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Problem solving, game playing ; Simulation ; Software</subject><ispartof>Naval research logistics, 1995-12, Vol.42 (8), p.1203-1232</ispartof><rights>Copyright © 1995 Wiley Periodicals, Inc., A Wiley Company</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4237-d5510266f780d54932bc8635fde8ff03f2599c96cb3e2177aa2a1770f4f0259f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1520-6750%28199512%2942%3A8%3C1203%3A%3AAID-NAV3220420807%3E3.0.CO%3B2-8$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1520-6750%28199512%2942%3A8%3C1203%3A%3AAID-NAV3220420807%3E3.0.CO%3B2-8$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2916759$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Crouch, Ingrid W. M.</creatorcontrib><creatorcontrib>Greenwood, Allen G.</creatorcontrib><creatorcontrib>Rees, Loren Paul</creatorcontrib><title>Use of a classifier in a knowledge-based simulation optimization system</title><title>Naval research logistics</title><addtitle>Naval Research Logistics</addtitle><description>This article defines and develops a simulation optimization system based upon response surface classification and the integration of multiple search strategies. Response surfaces are classified according to characteristics that indicate which search technique will be most successful. Typical surface characteristics include statistical measures and topological features, while search techniques encompass response surface methodology, simulated annealing, random search, etc. The classify‐then‐search process flow and a knowledge‐based architecture are developed and then demonstrated with a detailed computer example. The system is useful not only as an approach to optimizing simulations, but also as a means for integrating search techniques and thereby providing the user with the most promising path toward an optimal solution. © 1995 John Wiley & Sons, Inc.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Problem solving, game playing</subject><subject>Simulation</subject><subject>Software</subject><issn>0894-069X</issn><issn>1520-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqVkU1vEzEQhi0EEqHwH_aAEBycjsfr3XVAiLAtSaWquVDIbeTs2sh0P8I6UQm_HkdbReoFidNo5Mfvaz1m7JOAqQDAc6EQeJYreCu0VgLfpTgrPggEOZvNry74zfybRIQUoYD8o5zCtFy9R148YZPT1adsAoVOOWR6_Zy9COEnAGQpqAlb3Aab9C4xSdWYELzzdkh8F_e7rr9vbP3D8o0Jtk6Cb_eN2fm-S_rtzrf-z7iEQ9jZ9iV75kwT7KuHecZuv1x-LZf8erW4KufXvEpR5rxWSgBmmcsLqFWqJW6qIpPK1bZwDqRDpXWls2ojLYo8NwZNHOBSB_HIyTP2ZszdDv2vvQ07an2obNOYzvb7QBHKC4EygusRrIY-hME62g6-NcOBBNDRLB310FEPjWYpRSroaJYomqVHZkkSULmiiMTo1w9vMKEyjRtMV_lwykctYqqO2GbE7n1jD_9T_6_2xwexhI8lPv7C71OJGe5itswVfb9Z0PJCLrH8vCaUfwG5lqd2</recordid><startdate>199512</startdate><enddate>199512</enddate><creator>Crouch, Ingrid W. M.</creator><creator>Greenwood, Allen G.</creator><creator>Rees, Loren Paul</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199512</creationdate><title>Use of a classifier in a knowledge-based simulation optimization system</title><author>Crouch, Ingrid W. M. ; Greenwood, Allen G. ; Rees, Loren Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4237-d5510266f780d54932bc8635fde8ff03f2599c96cb3e2177aa2a1770f4f0259f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Problem solving, game playing</topic><topic>Simulation</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crouch, Ingrid W. M.</creatorcontrib><creatorcontrib>Greenwood, Allen G.</creatorcontrib><creatorcontrib>Rees, Loren Paul</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Naval research logistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crouch, Ingrid W. M.</au><au>Greenwood, Allen G.</au><au>Rees, Loren Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of a classifier in a knowledge-based simulation optimization system</atitle><jtitle>Naval research logistics</jtitle><addtitle>Naval Research Logistics</addtitle><date>1995-12</date><risdate>1995</risdate><volume>42</volume><issue>8</issue><spage>1203</spage><epage>1232</epage><pages>1203-1232</pages><issn>0894-069X</issn><eissn>1520-6750</eissn><coden>NRLQAR</coden><abstract>This article defines and develops a simulation optimization system based upon response surface classification and the integration of multiple search strategies. Response surfaces are classified according to characteristics that indicate which search technique will be most successful. Typical surface characteristics include statistical measures and topological features, while search techniques encompass response surface methodology, simulated annealing, random search, etc. The classify‐then‐search process flow and a knowledge‐based architecture are developed and then demonstrated with a detailed computer example. The system is useful not only as an approach to optimizing simulations, but also as a means for integrating search techniques and thereby providing the user with the most promising path toward an optimal solution. © 1995 John Wiley & Sons, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/1520-6750(199512)42:8<1203::AID-NAV3220420807>3.0.CO;2-8</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-069X |
ispartof | Naval research logistics, 1995-12, Vol.42 (8), p.1203-1232 |
issn | 0894-069X 1520-6750 |
language | eng |
recordid | cdi_proquest_miscellaneous_25978123 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Problem solving, game playing Simulation Software |
title | Use of a classifier in a knowledge-based simulation optimization system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20a%20classifier%20in%20a%20knowledge-based%20simulation%20optimization%20system&rft.jtitle=Naval%20research%20logistics&rft.au=Crouch,%20Ingrid%20W.%20M.&rft.date=1995-12&rft.volume=42&rft.issue=8&rft.spage=1203&rft.epage=1232&rft.pages=1203-1232&rft.issn=0894-069X&rft.eissn=1520-6750&rft.coden=NRLQAR&rft_id=info:doi/10.1002/1520-6750(199512)42:8%3C1203::AID-NAV3220420807%3E3.0.CO;2-8&rft_dat=%3Cproquest_cross%3E25978123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25978123&rft_id=info:pmid/&rfr_iscdi=true |