Bioink Platform Utilizing Dual‐Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells
3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell‐hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequent...
Gespeichert in:
Veröffentlicht in: | Macromolecular bioscience 2022-02, Vol.22 (2), p.e2100331-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e2100331 |
container_title | Macromolecular bioscience |
container_volume | 22 |
creator | Hauptstein, Julia Forster, Leonard Nadernezhad, Ali Horder, Hannes Stahlhut, Philipp Groll, Jürgen Blunk, Torsten Teßmar, Jörg |
description | 3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell‐hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequently observed. Therefore, this study presents a bioink platform using a new versatile dual‐stage crosslinking approach based on thiolated hyaluronic acid (HA‐SH), which not only provides stand‐alone 3D printability but also facilitates effective chondrogenic differentiation of mesenchymal stromal cells. A range of HA‐SH with different molecular weights is synthesized and crosslinked with acrylated (PEG‐diacryl) and allylated (PEG‐diallyl) polyethylene glycol in a two‐step reaction scheme. The initial Michael addition is used to achieve ink printability, followed by UV‐mediated thiol–ene reaction to stabilize the printed bioink for long‐term cell culture. Bioinks with high molecular weight HA‐SH (>200 kDa) require comparably low polymer content to facilitate bioprinting. This leads to superior quality of cartilaginous constructs which possess a coherent ECM and a strongly increased stiffness of long‐term cultured constructs. The dual‐stage system may serve as an example to design platforms using two independent crosslinking reactions at one functional group, which allows adjusting printability as well as material and biological properties of bioinks.
A versatile bioink platform based on hyaluronic acid is designed for cartilage biofabrication. The novel dual‐stage crosslinking approach allows adjustment of bioink 3D printability and material properties of the final constructs. Selected bioink compositions are used for long‐term cell culture and support differentiation of human mesenchymal stromal cells and the distribution of newly produced extracellular matrix. |
doi_str_mv | 10.1002/mabi.202100331 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2597809375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597809375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4131-8f87ee2157f71bdef5c13725b857729185543a6306ada0806c784ef7fb47a9483</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhy0EoqXlyhFZ4sJlF_-JY_u4TSmt1IpKbc-Wk9hbF8cudiK0nPoCSDxjn6SOtiwSF05ja775NJofAO8wWmKEyKdBt25JECkfSvELsI9rXC8Yluzl7i34HniT8x1CmAtJXoM9WnEuMZH74NeRiy58g5dejzamAd6MzrufLqzh8aT948Pvq1GvDWxSzNkXcu5EC0832k8pBtfBVed6eK2dj8n0sEhgcxtDn-LazO1jZ61JJoxOjy6GefjCZBO6282gPbwaU5xrY7zPh-CV1T6bt8_1ANycfL5uThfnX7-cNavzRVdhihfCCm4MwYxbjtveWNZhyglrBeOcSCwYq6iuKap1r5FAdcdFZSy3bcW1rAQ9AB-33vsUv08mj2pwuSsb6GDilBVhkgskKWcF_fAPehenFMp2itREkLpiuCrUckt1852Sseo-uUGnjcJIzUGpOSi1C6oMvH_WTu1g-h3-J5kCyC3ww3mz-Y9OXayOzv7KnwDxN6Eh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628264514</pqid></control><display><type>article</type><title>Bioink Platform Utilizing Dual‐Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Hauptstein, Julia ; Forster, Leonard ; Nadernezhad, Ali ; Horder, Hannes ; Stahlhut, Philipp ; Groll, Jürgen ; Blunk, Torsten ; Teßmar, Jörg</creator><creatorcontrib>Hauptstein, Julia ; Forster, Leonard ; Nadernezhad, Ali ; Horder, Hannes ; Stahlhut, Philipp ; Groll, Jürgen ; Blunk, Torsten ; Teßmar, Jörg</creatorcontrib><description>3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell‐hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequently observed. Therefore, this study presents a bioink platform using a new versatile dual‐stage crosslinking approach based on thiolated hyaluronic acid (HA‐SH), which not only provides stand‐alone 3D printability but also facilitates effective chondrogenic differentiation of mesenchymal stromal cells. A range of HA‐SH with different molecular weights is synthesized and crosslinked with acrylated (PEG‐diacryl) and allylated (PEG‐diallyl) polyethylene glycol in a two‐step reaction scheme. The initial Michael addition is used to achieve ink printability, followed by UV‐mediated thiol–ene reaction to stabilize the printed bioink for long‐term cell culture. Bioinks with high molecular weight HA‐SH (>200 kDa) require comparably low polymer content to facilitate bioprinting. This leads to superior quality of cartilaginous constructs which possess a coherent ECM and a strongly increased stiffness of long‐term cultured constructs. The dual‐stage system may serve as an example to design platforms using two independent crosslinking reactions at one functional group, which allows adjusting printability as well as material and biological properties of bioinks.
A versatile bioink platform based on hyaluronic acid is designed for cartilage biofabrication. The novel dual‐stage crosslinking approach allows adjustment of bioink 3D printability and material properties of the final constructs. Selected bioink compositions are used for long‐term cell culture and support differentiation of human mesenchymal stromal cells and the distribution of newly produced extracellular matrix.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202100331</identifier><identifier>PMID: 34779129</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bioengineering ; biofabrication ; Biological properties ; Bioprinting ; Cell culture ; Cell Differentiation ; Cell survival ; Chemical synthesis ; chondrogenic differentiation ; Crosslinking ; Differentiation (biology) ; dual‐stage crosslinking ; Extracellular matrix ; Fabrication ; Functional groups ; Hyaluronic acid ; Hyaluronic Acid - pharmacology ; Hydrogels ; Mesenchymal Stem Cells ; Mesenchyme ; Molecular weight ; Polyethylene glycol ; Polymers ; Printing, Three-Dimensional ; Stem cells ; Stiffness ; Stromal cells ; Three dimensional printing ; Tissue Engineering ; Tissue Scaffolds</subject><ispartof>Macromolecular bioscience, 2022-02, Vol.22 (2), p.e2100331-n/a</ispartof><rights>2021 The Authors. Macromolecular Bioscience published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4131-8f87ee2157f71bdef5c13725b857729185543a6306ada0806c784ef7fb47a9483</citedby><cites>FETCH-LOGICAL-c4131-8f87ee2157f71bdef5c13725b857729185543a6306ada0806c784ef7fb47a9483</cites><orcidid>0000-0001-7057-5369 ; 0000-0003-3167-8466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.202100331$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.202100331$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34779129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hauptstein, Julia</creatorcontrib><creatorcontrib>Forster, Leonard</creatorcontrib><creatorcontrib>Nadernezhad, Ali</creatorcontrib><creatorcontrib>Horder, Hannes</creatorcontrib><creatorcontrib>Stahlhut, Philipp</creatorcontrib><creatorcontrib>Groll, Jürgen</creatorcontrib><creatorcontrib>Blunk, Torsten</creatorcontrib><creatorcontrib>Teßmar, Jörg</creatorcontrib><title>Bioink Platform Utilizing Dual‐Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell‐hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequently observed. Therefore, this study presents a bioink platform using a new versatile dual‐stage crosslinking approach based on thiolated hyaluronic acid (HA‐SH), which not only provides stand‐alone 3D printability but also facilitates effective chondrogenic differentiation of mesenchymal stromal cells. A range of HA‐SH with different molecular weights is synthesized and crosslinked with acrylated (PEG‐diacryl) and allylated (PEG‐diallyl) polyethylene glycol in a two‐step reaction scheme. The initial Michael addition is used to achieve ink printability, followed by UV‐mediated thiol–ene reaction to stabilize the printed bioink for long‐term cell culture. Bioinks with high molecular weight HA‐SH (>200 kDa) require comparably low polymer content to facilitate bioprinting. This leads to superior quality of cartilaginous constructs which possess a coherent ECM and a strongly increased stiffness of long‐term cultured constructs. The dual‐stage system may serve as an example to design platforms using two independent crosslinking reactions at one functional group, which allows adjusting printability as well as material and biological properties of bioinks.
A versatile bioink platform based on hyaluronic acid is designed for cartilage biofabrication. The novel dual‐stage crosslinking approach allows adjustment of bioink 3D printability and material properties of the final constructs. Selected bioink compositions are used for long‐term cell culture and support differentiation of human mesenchymal stromal cells and the distribution of newly produced extracellular matrix.</description><subject>Bioengineering</subject><subject>biofabrication</subject><subject>Biological properties</subject><subject>Bioprinting</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell survival</subject><subject>Chemical synthesis</subject><subject>chondrogenic differentiation</subject><subject>Crosslinking</subject><subject>Differentiation (biology)</subject><subject>dual‐stage crosslinking</subject><subject>Extracellular matrix</subject><subject>Fabrication</subject><subject>Functional groups</subject><subject>Hyaluronic acid</subject><subject>Hyaluronic Acid - pharmacology</subject><subject>Hydrogels</subject><subject>Mesenchymal Stem Cells</subject><subject>Mesenchyme</subject><subject>Molecular weight</subject><subject>Polyethylene glycol</subject><subject>Polymers</subject><subject>Printing, Three-Dimensional</subject><subject>Stem cells</subject><subject>Stiffness</subject><subject>Stromal cells</subject><subject>Three dimensional printing</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQhy0EoqXlyhFZ4sJlF_-JY_u4TSmt1IpKbc-Wk9hbF8cudiK0nPoCSDxjn6SOtiwSF05ja775NJofAO8wWmKEyKdBt25JECkfSvELsI9rXC8Yluzl7i34HniT8x1CmAtJXoM9WnEuMZH74NeRiy58g5dejzamAd6MzrufLqzh8aT948Pvq1GvDWxSzNkXcu5EC0832k8pBtfBVed6eK2dj8n0sEhgcxtDn-LazO1jZ61JJoxOjy6GefjCZBO6282gPbwaU5xrY7zPh-CV1T6bt8_1ANycfL5uThfnX7-cNavzRVdhihfCCm4MwYxbjtveWNZhyglrBeOcSCwYq6iuKap1r5FAdcdFZSy3bcW1rAQ9AB-33vsUv08mj2pwuSsb6GDilBVhkgskKWcF_fAPehenFMp2itREkLpiuCrUckt1852Sseo-uUGnjcJIzUGpOSi1C6oMvH_WTu1g-h3-J5kCyC3ww3mz-Y9OXayOzv7KnwDxN6Eh</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Hauptstein, Julia</creator><creator>Forster, Leonard</creator><creator>Nadernezhad, Ali</creator><creator>Horder, Hannes</creator><creator>Stahlhut, Philipp</creator><creator>Groll, Jürgen</creator><creator>Blunk, Torsten</creator><creator>Teßmar, Jörg</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7057-5369</orcidid><orcidid>https://orcid.org/0000-0003-3167-8466</orcidid></search><sort><creationdate>202202</creationdate><title>Bioink Platform Utilizing Dual‐Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells</title><author>Hauptstein, Julia ; Forster, Leonard ; Nadernezhad, Ali ; Horder, Hannes ; Stahlhut, Philipp ; Groll, Jürgen ; Blunk, Torsten ; Teßmar, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4131-8f87ee2157f71bdef5c13725b857729185543a6306ada0806c784ef7fb47a9483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioengineering</topic><topic>biofabrication</topic><topic>Biological properties</topic><topic>Bioprinting</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell survival</topic><topic>Chemical synthesis</topic><topic>chondrogenic differentiation</topic><topic>Crosslinking</topic><topic>Differentiation (biology)</topic><topic>dual‐stage crosslinking</topic><topic>Extracellular matrix</topic><topic>Fabrication</topic><topic>Functional groups</topic><topic>Hyaluronic acid</topic><topic>Hyaluronic Acid - pharmacology</topic><topic>Hydrogels</topic><topic>Mesenchymal Stem Cells</topic><topic>Mesenchyme</topic><topic>Molecular weight</topic><topic>Polyethylene glycol</topic><topic>Polymers</topic><topic>Printing, Three-Dimensional</topic><topic>Stem cells</topic><topic>Stiffness</topic><topic>Stromal cells</topic><topic>Three dimensional printing</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hauptstein, Julia</creatorcontrib><creatorcontrib>Forster, Leonard</creatorcontrib><creatorcontrib>Nadernezhad, Ali</creatorcontrib><creatorcontrib>Horder, Hannes</creatorcontrib><creatorcontrib>Stahlhut, Philipp</creatorcontrib><creatorcontrib>Groll, Jürgen</creatorcontrib><creatorcontrib>Blunk, Torsten</creatorcontrib><creatorcontrib>Teßmar, Jörg</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hauptstein, Julia</au><au>Forster, Leonard</au><au>Nadernezhad, Ali</au><au>Horder, Hannes</au><au>Stahlhut, Philipp</au><au>Groll, Jürgen</au><au>Blunk, Torsten</au><au>Teßmar, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioink Platform Utilizing Dual‐Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2022-02</date><risdate>2022</risdate><volume>22</volume><issue>2</issue><spage>e2100331</spage><epage>n/a</epage><pages>e2100331-n/a</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell‐hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequently observed. Therefore, this study presents a bioink platform using a new versatile dual‐stage crosslinking approach based on thiolated hyaluronic acid (HA‐SH), which not only provides stand‐alone 3D printability but also facilitates effective chondrogenic differentiation of mesenchymal stromal cells. A range of HA‐SH with different molecular weights is synthesized and crosslinked with acrylated (PEG‐diacryl) and allylated (PEG‐diallyl) polyethylene glycol in a two‐step reaction scheme. The initial Michael addition is used to achieve ink printability, followed by UV‐mediated thiol–ene reaction to stabilize the printed bioink for long‐term cell culture. Bioinks with high molecular weight HA‐SH (>200 kDa) require comparably low polymer content to facilitate bioprinting. This leads to superior quality of cartilaginous constructs which possess a coherent ECM and a strongly increased stiffness of long‐term cultured constructs. The dual‐stage system may serve as an example to design platforms using two independent crosslinking reactions at one functional group, which allows adjusting printability as well as material and biological properties of bioinks.
A versatile bioink platform based on hyaluronic acid is designed for cartilage biofabrication. The novel dual‐stage crosslinking approach allows adjustment of bioink 3D printability and material properties of the final constructs. Selected bioink compositions are used for long‐term cell culture and support differentiation of human mesenchymal stromal cells and the distribution of newly produced extracellular matrix.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34779129</pmid><doi>10.1002/mabi.202100331</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7057-5369</orcidid><orcidid>https://orcid.org/0000-0003-3167-8466</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5187 |
ispartof | Macromolecular bioscience, 2022-02, Vol.22 (2), p.e2100331-n/a |
issn | 1616-5187 1616-5195 |
language | eng |
recordid | cdi_proquest_miscellaneous_2597809375 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Bioengineering biofabrication Biological properties Bioprinting Cell culture Cell Differentiation Cell survival Chemical synthesis chondrogenic differentiation Crosslinking Differentiation (biology) dual‐stage crosslinking Extracellular matrix Fabrication Functional groups Hyaluronic acid Hyaluronic Acid - pharmacology Hydrogels Mesenchymal Stem Cells Mesenchyme Molecular weight Polyethylene glycol Polymers Printing, Three-Dimensional Stem cells Stiffness Stromal cells Three dimensional printing Tissue Engineering Tissue Scaffolds |
title | Bioink Platform Utilizing Dual‐Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioink%20Platform%20Utilizing%20Dual%E2%80%90Stage%20Crosslinking%20of%20Hyaluronic%20Acid%20Tailored%20for%20Chondrogenic%20Differentiation%20of%20Mesenchymal%20Stromal%20Cells&rft.jtitle=Macromolecular%20bioscience&rft.au=Hauptstein,%20Julia&rft.date=2022-02&rft.volume=22&rft.issue=2&rft.spage=e2100331&rft.epage=n/a&rft.pages=e2100331-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202100331&rft_dat=%3Cproquest_cross%3E2597809375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628264514&rft_id=info:pmid/34779129&rfr_iscdi=true |