Bioink Platform Utilizing Dual‐Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells

3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell‐hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2022-02, Vol.22 (2), p.e2100331-n/a
Hauptverfasser: Hauptstein, Julia, Forster, Leonard, Nadernezhad, Ali, Horder, Hannes, Stahlhut, Philipp, Groll, Jürgen, Blunk, Torsten, Teßmar, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e2100331
container_title Macromolecular bioscience
container_volume 22
creator Hauptstein, Julia
Forster, Leonard
Nadernezhad, Ali
Horder, Hannes
Stahlhut, Philipp
Groll, Jürgen
Blunk, Torsten
Teßmar, Jörg
description 3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell‐hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequently observed. Therefore, this study presents a bioink platform using a new versatile dual‐stage crosslinking approach based on thiolated hyaluronic acid (HA‐SH), which not only provides stand‐alone 3D printability but also facilitates effective chondrogenic differentiation of mesenchymal stromal cells. A range of HA‐SH with different molecular weights is synthesized and crosslinked with acrylated (PEG‐diacryl) and allylated (PEG‐diallyl) polyethylene glycol in a two‐step reaction scheme. The initial Michael addition is used to achieve ink printability, followed by UV‐mediated thiol–ene reaction to stabilize the printed bioink for long‐term cell culture. Bioinks with high molecular weight HA‐SH (>200 kDa) require comparably low polymer content to facilitate bioprinting. This leads to superior quality of cartilaginous constructs which possess a coherent ECM and a strongly increased stiffness of long‐term cultured constructs. The dual‐stage system may serve as an example to design platforms using two independent crosslinking reactions at one functional group, which allows adjusting printability as well as material and biological properties of bioinks. A versatile bioink platform based on hyaluronic acid is designed for cartilage biofabrication. The novel dual‐stage crosslinking approach allows adjustment of bioink 3D printability and material properties of the final constructs. Selected bioink compositions are used for long‐term cell culture and support differentiation of human mesenchymal stromal cells and the distribution of newly produced extracellular matrix.
doi_str_mv 10.1002/mabi.202100331
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2597809375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597809375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4131-8f87ee2157f71bdef5c13725b857729185543a6306ada0806c784ef7fb47a9483</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhy0EoqXlyhFZ4sJlF_-JY_u4TSmt1IpKbc-Wk9hbF8cudiK0nPoCSDxjn6SOtiwSF05ja775NJofAO8wWmKEyKdBt25JECkfSvELsI9rXC8Yluzl7i34HniT8x1CmAtJXoM9WnEuMZH74NeRiy58g5dejzamAd6MzrufLqzh8aT948Pvq1GvDWxSzNkXcu5EC0832k8pBtfBVed6eK2dj8n0sEhgcxtDn-LazO1jZ61JJoxOjy6GefjCZBO6282gPbwaU5xrY7zPh-CV1T6bt8_1ANycfL5uThfnX7-cNavzRVdhihfCCm4MwYxbjtveWNZhyglrBeOcSCwYq6iuKap1r5FAdcdFZSy3bcW1rAQ9AB-33vsUv08mj2pwuSsb6GDilBVhkgskKWcF_fAPehenFMp2itREkLpiuCrUckt1852Sseo-uUGnjcJIzUGpOSi1C6oMvH_WTu1g-h3-J5kCyC3ww3mz-Y9OXayOzv7KnwDxN6Eh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628264514</pqid></control><display><type>article</type><title>Bioink Platform Utilizing Dual‐Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Hauptstein, Julia ; Forster, Leonard ; Nadernezhad, Ali ; Horder, Hannes ; Stahlhut, Philipp ; Groll, Jürgen ; Blunk, Torsten ; Teßmar, Jörg</creator><creatorcontrib>Hauptstein, Julia ; Forster, Leonard ; Nadernezhad, Ali ; Horder, Hannes ; Stahlhut, Philipp ; Groll, Jürgen ; Blunk, Torsten ; Teßmar, Jörg</creatorcontrib><description>3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell‐hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequently observed. Therefore, this study presents a bioink platform using a new versatile dual‐stage crosslinking approach based on thiolated hyaluronic acid (HA‐SH), which not only provides stand‐alone 3D printability but also facilitates effective chondrogenic differentiation of mesenchymal stromal cells. A range of HA‐SH with different molecular weights is synthesized and crosslinked with acrylated (PEG‐diacryl) and allylated (PEG‐diallyl) polyethylene glycol in a two‐step reaction scheme. The initial Michael addition is used to achieve ink printability, followed by UV‐mediated thiol–ene reaction to stabilize the printed bioink for long‐term cell culture. Bioinks with high molecular weight HA‐SH (&gt;200 kDa) require comparably low polymer content to facilitate bioprinting. This leads to superior quality of cartilaginous constructs which possess a coherent ECM and a strongly increased stiffness of long‐term cultured constructs. The dual‐stage system may serve as an example to design platforms using two independent crosslinking reactions at one functional group, which allows adjusting printability as well as material and biological properties of bioinks. A versatile bioink platform based on hyaluronic acid is designed for cartilage biofabrication. The novel dual‐stage crosslinking approach allows adjustment of bioink 3D printability and material properties of the final constructs. Selected bioink compositions are used for long‐term cell culture and support differentiation of human mesenchymal stromal cells and the distribution of newly produced extracellular matrix.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202100331</identifier><identifier>PMID: 34779129</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bioengineering ; biofabrication ; Biological properties ; Bioprinting ; Cell culture ; Cell Differentiation ; Cell survival ; Chemical synthesis ; chondrogenic differentiation ; Crosslinking ; Differentiation (biology) ; dual‐stage crosslinking ; Extracellular matrix ; Fabrication ; Functional groups ; Hyaluronic acid ; Hyaluronic Acid - pharmacology ; Hydrogels ; Mesenchymal Stem Cells ; Mesenchyme ; Molecular weight ; Polyethylene glycol ; Polymers ; Printing, Three-Dimensional ; Stem cells ; Stiffness ; Stromal cells ; Three dimensional printing ; Tissue Engineering ; Tissue Scaffolds</subject><ispartof>Macromolecular bioscience, 2022-02, Vol.22 (2), p.e2100331-n/a</ispartof><rights>2021 The Authors. Macromolecular Bioscience published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4131-8f87ee2157f71bdef5c13725b857729185543a6306ada0806c784ef7fb47a9483</citedby><cites>FETCH-LOGICAL-c4131-8f87ee2157f71bdef5c13725b857729185543a6306ada0806c784ef7fb47a9483</cites><orcidid>0000-0001-7057-5369 ; 0000-0003-3167-8466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.202100331$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.202100331$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34779129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hauptstein, Julia</creatorcontrib><creatorcontrib>Forster, Leonard</creatorcontrib><creatorcontrib>Nadernezhad, Ali</creatorcontrib><creatorcontrib>Horder, Hannes</creatorcontrib><creatorcontrib>Stahlhut, Philipp</creatorcontrib><creatorcontrib>Groll, Jürgen</creatorcontrib><creatorcontrib>Blunk, Torsten</creatorcontrib><creatorcontrib>Teßmar, Jörg</creatorcontrib><title>Bioink Platform Utilizing Dual‐Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell‐hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequently observed. Therefore, this study presents a bioink platform using a new versatile dual‐stage crosslinking approach based on thiolated hyaluronic acid (HA‐SH), which not only provides stand‐alone 3D printability but also facilitates effective chondrogenic differentiation of mesenchymal stromal cells. A range of HA‐SH with different molecular weights is synthesized and crosslinked with acrylated (PEG‐diacryl) and allylated (PEG‐diallyl) polyethylene glycol in a two‐step reaction scheme. The initial Michael addition is used to achieve ink printability, followed by UV‐mediated thiol–ene reaction to stabilize the printed bioink for long‐term cell culture. Bioinks with high molecular weight HA‐SH (&gt;200 kDa) require comparably low polymer content to facilitate bioprinting. This leads to superior quality of cartilaginous constructs which possess a coherent ECM and a strongly increased stiffness of long‐term cultured constructs. The dual‐stage system may serve as an example to design platforms using two independent crosslinking reactions at one functional group, which allows adjusting printability as well as material and biological properties of bioinks. A versatile bioink platform based on hyaluronic acid is designed for cartilage biofabrication. The novel dual‐stage crosslinking approach allows adjustment of bioink 3D printability and material properties of the final constructs. Selected bioink compositions are used for long‐term cell culture and support differentiation of human mesenchymal stromal cells and the distribution of newly produced extracellular matrix.</description><subject>Bioengineering</subject><subject>biofabrication</subject><subject>Biological properties</subject><subject>Bioprinting</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell survival</subject><subject>Chemical synthesis</subject><subject>chondrogenic differentiation</subject><subject>Crosslinking</subject><subject>Differentiation (biology)</subject><subject>dual‐stage crosslinking</subject><subject>Extracellular matrix</subject><subject>Fabrication</subject><subject>Functional groups</subject><subject>Hyaluronic acid</subject><subject>Hyaluronic Acid - pharmacology</subject><subject>Hydrogels</subject><subject>Mesenchymal Stem Cells</subject><subject>Mesenchyme</subject><subject>Molecular weight</subject><subject>Polyethylene glycol</subject><subject>Polymers</subject><subject>Printing, Three-Dimensional</subject><subject>Stem cells</subject><subject>Stiffness</subject><subject>Stromal cells</subject><subject>Three dimensional printing</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQhy0EoqXlyhFZ4sJlF_-JY_u4TSmt1IpKbc-Wk9hbF8cudiK0nPoCSDxjn6SOtiwSF05ja775NJofAO8wWmKEyKdBt25JECkfSvELsI9rXC8Yluzl7i34HniT8x1CmAtJXoM9WnEuMZH74NeRiy58g5dejzamAd6MzrufLqzh8aT948Pvq1GvDWxSzNkXcu5EC0832k8pBtfBVed6eK2dj8n0sEhgcxtDn-LazO1jZ61JJoxOjy6GefjCZBO6282gPbwaU5xrY7zPh-CV1T6bt8_1ANycfL5uThfnX7-cNavzRVdhihfCCm4MwYxbjtveWNZhyglrBeOcSCwYq6iuKap1r5FAdcdFZSy3bcW1rAQ9AB-33vsUv08mj2pwuSsb6GDilBVhkgskKWcF_fAPehenFMp2itREkLpiuCrUckt1852Sseo-uUGnjcJIzUGpOSi1C6oMvH_WTu1g-h3-J5kCyC3ww3mz-Y9OXayOzv7KnwDxN6Eh</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Hauptstein, Julia</creator><creator>Forster, Leonard</creator><creator>Nadernezhad, Ali</creator><creator>Horder, Hannes</creator><creator>Stahlhut, Philipp</creator><creator>Groll, Jürgen</creator><creator>Blunk, Torsten</creator><creator>Teßmar, Jörg</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7057-5369</orcidid><orcidid>https://orcid.org/0000-0003-3167-8466</orcidid></search><sort><creationdate>202202</creationdate><title>Bioink Platform Utilizing Dual‐Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells</title><author>Hauptstein, Julia ; Forster, Leonard ; Nadernezhad, Ali ; Horder, Hannes ; Stahlhut, Philipp ; Groll, Jürgen ; Blunk, Torsten ; Teßmar, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4131-8f87ee2157f71bdef5c13725b857729185543a6306ada0806c784ef7fb47a9483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioengineering</topic><topic>biofabrication</topic><topic>Biological properties</topic><topic>Bioprinting</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell survival</topic><topic>Chemical synthesis</topic><topic>chondrogenic differentiation</topic><topic>Crosslinking</topic><topic>Differentiation (biology)</topic><topic>dual‐stage crosslinking</topic><topic>Extracellular matrix</topic><topic>Fabrication</topic><topic>Functional groups</topic><topic>Hyaluronic acid</topic><topic>Hyaluronic Acid - pharmacology</topic><topic>Hydrogels</topic><topic>Mesenchymal Stem Cells</topic><topic>Mesenchyme</topic><topic>Molecular weight</topic><topic>Polyethylene glycol</topic><topic>Polymers</topic><topic>Printing, Three-Dimensional</topic><topic>Stem cells</topic><topic>Stiffness</topic><topic>Stromal cells</topic><topic>Three dimensional printing</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hauptstein, Julia</creatorcontrib><creatorcontrib>Forster, Leonard</creatorcontrib><creatorcontrib>Nadernezhad, Ali</creatorcontrib><creatorcontrib>Horder, Hannes</creatorcontrib><creatorcontrib>Stahlhut, Philipp</creatorcontrib><creatorcontrib>Groll, Jürgen</creatorcontrib><creatorcontrib>Blunk, Torsten</creatorcontrib><creatorcontrib>Teßmar, Jörg</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hauptstein, Julia</au><au>Forster, Leonard</au><au>Nadernezhad, Ali</au><au>Horder, Hannes</au><au>Stahlhut, Philipp</au><au>Groll, Jürgen</au><au>Blunk, Torsten</au><au>Teßmar, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioink Platform Utilizing Dual‐Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2022-02</date><risdate>2022</risdate><volume>22</volume><issue>2</issue><spage>e2100331</spage><epage>n/a</epage><pages>e2100331-n/a</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>3D bioprinting often involves application of highly concentrated polymeric bioinks to enable fabrication of stable cell‐hydrogel constructs, although poor cell survival, compromised stem cell differentiation, and an inhomogeneous distribution of newly produced extracellular matrix (ECM) are frequently observed. Therefore, this study presents a bioink platform using a new versatile dual‐stage crosslinking approach based on thiolated hyaluronic acid (HA‐SH), which not only provides stand‐alone 3D printability but also facilitates effective chondrogenic differentiation of mesenchymal stromal cells. A range of HA‐SH with different molecular weights is synthesized and crosslinked with acrylated (PEG‐diacryl) and allylated (PEG‐diallyl) polyethylene glycol in a two‐step reaction scheme. The initial Michael addition is used to achieve ink printability, followed by UV‐mediated thiol–ene reaction to stabilize the printed bioink for long‐term cell culture. Bioinks with high molecular weight HA‐SH (&gt;200 kDa) require comparably low polymer content to facilitate bioprinting. This leads to superior quality of cartilaginous constructs which possess a coherent ECM and a strongly increased stiffness of long‐term cultured constructs. The dual‐stage system may serve as an example to design platforms using two independent crosslinking reactions at one functional group, which allows adjusting printability as well as material and biological properties of bioinks. A versatile bioink platform based on hyaluronic acid is designed for cartilage biofabrication. The novel dual‐stage crosslinking approach allows adjustment of bioink 3D printability and material properties of the final constructs. Selected bioink compositions are used for long‐term cell culture and support differentiation of human mesenchymal stromal cells and the distribution of newly produced extracellular matrix.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34779129</pmid><doi>10.1002/mabi.202100331</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7057-5369</orcidid><orcidid>https://orcid.org/0000-0003-3167-8466</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2022-02, Vol.22 (2), p.e2100331-n/a
issn 1616-5187
1616-5195
language eng
recordid cdi_proquest_miscellaneous_2597809375
source MEDLINE; Access via Wiley Online Library
subjects Bioengineering
biofabrication
Biological properties
Bioprinting
Cell culture
Cell Differentiation
Cell survival
Chemical synthesis
chondrogenic differentiation
Crosslinking
Differentiation (biology)
dual‐stage crosslinking
Extracellular matrix
Fabrication
Functional groups
Hyaluronic acid
Hyaluronic Acid - pharmacology
Hydrogels
Mesenchymal Stem Cells
Mesenchyme
Molecular weight
Polyethylene glycol
Polymers
Printing, Three-Dimensional
Stem cells
Stiffness
Stromal cells
Three dimensional printing
Tissue Engineering
Tissue Scaffolds
title Bioink Platform Utilizing Dual‐Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioink%20Platform%20Utilizing%20Dual%E2%80%90Stage%20Crosslinking%20of%20Hyaluronic%20Acid%20Tailored%20for%20Chondrogenic%20Differentiation%20of%20Mesenchymal%20Stromal%20Cells&rft.jtitle=Macromolecular%20bioscience&rft.au=Hauptstein,%20Julia&rft.date=2022-02&rft.volume=22&rft.issue=2&rft.spage=e2100331&rft.epage=n/a&rft.pages=e2100331-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202100331&rft_dat=%3Cproquest_cross%3E2597809375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628264514&rft_id=info:pmid/34779129&rfr_iscdi=true