Defence‐related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae

The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant‐defence strategies linked to transcriptome regulation, phytohormones and primary metabolism mig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant, cell and environment cell and environment, 2022-02, Vol.45 (2), p.528-541
Hauptverfasser: Nunes da Silva, Marta, Carvalho, Susana M. P., Rodrigues, Ana M., Gómez‐Cadenas, ‪Aurelio, António, Carla, Vasconcelos, Marta W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 541
container_issue 2
container_start_page 528
container_title Plant, cell and environment
container_volume 45
creator Nunes da Silva, Marta
Carvalho, Susana M. P.
Rodrigues, Ana M.
Gómez‐Cadenas, ‪Aurelio
António, Carla
Vasconcelos, Marta W.
description The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant‐defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10‐fold higher in A. chinensis var. deliciosa than in Actinidia arguta, accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2‐fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7‐fold), no changes in primary metabolites, and 20 defence‐related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA, which may contribute to its higher tolerance. Results suggest that A. chinensis' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection. Summary Statement The pandemic bacterium P. syringae pv. actinidiae is currently the most important pathogen affecting kiwifruit productivity worldwide. Given the absence of sustainable and effective mitigation strategies, it is imperative to understand plant tolerance mechanisms that could support crop improvement and better agronomical practices. Here, we found that plant susceptibility to Psa results from an inefficient activation of plant defences, involving the jasmonic acid and salicylic acid pathways, and leads to impairments in primary metabolism, particularly the ammonia assimilation cycle. Tolerance is most likely due to a more strategic defensive and metabolic readjustment, resulting from the activation of specific defence‐related genes and to the downregulation of the abscisic acid pathway.
doi_str_mv 10.1111/pce.14224
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2597496572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620956295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3534-2576294cdac04117384ce05d6753dbb6ee1cd6cba10152ace6e7d5f4a53854673</originalsourceid><addsrcrecordid>eNp1kc1u1DAYRS1ERYfCghdAltiA1Ez972ZZDeVHqkQXsLYc-wvjNomDnTDKjkdgwRPyJLidoQskvLH1-ej4yhehF5SsaVlno4M1FYyJR2hFuZIVJ4I8RitCBam0rukxeprzDSFloOsn6JgLrbmg9Qr9egstDA5-__iZoLMTeDzaabuzSz7F43aZ4jamPg6QsR3KXQq9TQvuYbJN7ELusU2Ab2HBY2cXSBmHAd-GXWjTHKa74TDhKXaQbHmlnPB1htnHorQZ5yWF4asFPH5fY-umMAQfLDxDR63tMjw_7Cfoy7vLz5sP1dWn9x83F1eV45KLikmtWC2ct44ISjU_Fw6I9EpL7ptGAVDnlWssJVQy60CB9rIVVvJzKZTmJ-j13jum-G2GPJk-ZAddCQ1xzobJWotaSc0K-uof9CbOaSjpDFOM1LIkkYV6s6dcijknaM3hwwwl5q4qU6oy91UV9uXBODc9-AfybzcFONsDu9DB8n-Tud5c7pV_AI61oOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620956295</pqid></control><display><type>article</type><title>Defence‐related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae</title><source>Wiley Free Content</source><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nunes da Silva, Marta ; Carvalho, Susana M. P. ; Rodrigues, Ana M. ; Gómez‐Cadenas, ‪Aurelio ; António, Carla ; Vasconcelos, Marta W.</creator><creatorcontrib>Nunes da Silva, Marta ; Carvalho, Susana M. P. ; Rodrigues, Ana M. ; Gómez‐Cadenas, ‪Aurelio ; António, Carla ; Vasconcelos, Marta W.</creatorcontrib><description>The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant‐defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10‐fold higher in A. chinensis var. deliciosa than in Actinidia arguta, accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2‐fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7‐fold), no changes in primary metabolites, and 20 defence‐related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA, which may contribute to its higher tolerance. Results suggest that A. chinensis' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection. Summary Statement The pandemic bacterium P. syringae pv. actinidiae is currently the most important pathogen affecting kiwifruit productivity worldwide. Given the absence of sustainable and effective mitigation strategies, it is imperative to understand plant tolerance mechanisms that could support crop improvement and better agronomical practices. Here, we found that plant susceptibility to Psa results from an inefficient activation of plant defences, involving the jasmonic acid and salicylic acid pathways, and leads to impairments in primary metabolism, particularly the ammonia assimilation cycle. Tolerance is most likely due to a more strategic defensive and metabolic readjustment, resulting from the activation of specific defence‐related genes and to the downregulation of the abscisic acid pathway.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.14224</identifier><identifier>PMID: 34773419</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Abscisic acid ; Actinidia ; Actinidia - microbiology ; Actinidia - physiology ; Actinidia arguta ; Ammonia ; ammonia assimilation cycle ; Genotypes ; Glutamine ; Host Microbial Interactions ; Jasmonic acid ; Kiwifruit ; kiwifruit bacterial canker ; Metabolic disorders ; Metabolism ; Metabolites ; Metabolomics ; Ornithine ; Pandemics ; Phenotypes ; Phytohormones ; Plant bacterial diseases ; Plant Diseases - microbiology ; Plant Growth Regulators - metabolism ; Plant hormones ; Plant Immunity - physiology ; Pseudomonas ; Pseudomonas syringae ; Pseudomonas syringae - physiology ; Salicylic acid ; susceptibility ; Transcriptomes ; Transcriptomics ; whole‐transcriptome sequencing</subject><ispartof>Plant, cell and environment, 2022-02, Vol.45 (2), p.528-541</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3534-2576294cdac04117384ce05d6753dbb6ee1cd6cba10152ace6e7d5f4a53854673</citedby><cites>FETCH-LOGICAL-c3534-2576294cdac04117384ce05d6753dbb6ee1cd6cba10152ace6e7d5f4a53854673</cites><orcidid>0000-0001-6747-1243 ; 0000-0002-5110-7006 ; 0000-0001-8228-0576 ; 0000-0002-4598-2664 ; 0000-0001-7157-1079 ; 0000-0003-3257-9777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpce.14224$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpce.14224$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34773419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nunes da Silva, Marta</creatorcontrib><creatorcontrib>Carvalho, Susana M. P.</creatorcontrib><creatorcontrib>Rodrigues, Ana M.</creatorcontrib><creatorcontrib>Gómez‐Cadenas, ‪Aurelio</creatorcontrib><creatorcontrib>António, Carla</creatorcontrib><creatorcontrib>Vasconcelos, Marta W.</creatorcontrib><title>Defence‐related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant‐defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10‐fold higher in A. chinensis var. deliciosa than in Actinidia arguta, accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2‐fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7‐fold), no changes in primary metabolites, and 20 defence‐related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA, which may contribute to its higher tolerance. Results suggest that A. chinensis' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection. Summary Statement The pandemic bacterium P. syringae pv. actinidiae is currently the most important pathogen affecting kiwifruit productivity worldwide. Given the absence of sustainable and effective mitigation strategies, it is imperative to understand plant tolerance mechanisms that could support crop improvement and better agronomical practices. Here, we found that plant susceptibility to Psa results from an inefficient activation of plant defences, involving the jasmonic acid and salicylic acid pathways, and leads to impairments in primary metabolism, particularly the ammonia assimilation cycle. Tolerance is most likely due to a more strategic defensive and metabolic readjustment, resulting from the activation of specific defence‐related genes and to the downregulation of the abscisic acid pathway.</description><subject>Abscisic acid</subject><subject>Actinidia</subject><subject>Actinidia - microbiology</subject><subject>Actinidia - physiology</subject><subject>Actinidia arguta</subject><subject>Ammonia</subject><subject>ammonia assimilation cycle</subject><subject>Genotypes</subject><subject>Glutamine</subject><subject>Host Microbial Interactions</subject><subject>Jasmonic acid</subject><subject>Kiwifruit</subject><subject>kiwifruit bacterial canker</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Ornithine</subject><subject>Pandemics</subject><subject>Phenotypes</subject><subject>Phytohormones</subject><subject>Plant bacterial diseases</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant hormones</subject><subject>Plant Immunity - physiology</subject><subject>Pseudomonas</subject><subject>Pseudomonas syringae</subject><subject>Pseudomonas syringae - physiology</subject><subject>Salicylic acid</subject><subject>susceptibility</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><subject>whole‐transcriptome sequencing</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAYRS1ERYfCghdAltiA1Ez972ZZDeVHqkQXsLYc-wvjNomDnTDKjkdgwRPyJLidoQskvLH1-ej4yhehF5SsaVlno4M1FYyJR2hFuZIVJ4I8RitCBam0rukxeprzDSFloOsn6JgLrbmg9Qr9egstDA5-__iZoLMTeDzaabuzSz7F43aZ4jamPg6QsR3KXQq9TQvuYbJN7ELusU2Ab2HBY2cXSBmHAd-GXWjTHKa74TDhKXaQbHmlnPB1htnHorQZ5yWF4asFPH5fY-umMAQfLDxDR63tMjw_7Cfoy7vLz5sP1dWn9x83F1eV45KLikmtWC2ct44ISjU_Fw6I9EpL7ptGAVDnlWssJVQy60CB9rIVVvJzKZTmJ-j13jum-G2GPJk-ZAddCQ1xzobJWotaSc0K-uof9CbOaSjpDFOM1LIkkYV6s6dcijknaM3hwwwl5q4qU6oy91UV9uXBODc9-AfybzcFONsDu9DB8n-Tud5c7pV_AI61oOo</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Nunes da Silva, Marta</creator><creator>Carvalho, Susana M. P.</creator><creator>Rodrigues, Ana M.</creator><creator>Gómez‐Cadenas, ‪Aurelio</creator><creator>António, Carla</creator><creator>Vasconcelos, Marta W.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6747-1243</orcidid><orcidid>https://orcid.org/0000-0002-5110-7006</orcidid><orcidid>https://orcid.org/0000-0001-8228-0576</orcidid><orcidid>https://orcid.org/0000-0002-4598-2664</orcidid><orcidid>https://orcid.org/0000-0001-7157-1079</orcidid><orcidid>https://orcid.org/0000-0003-3257-9777</orcidid></search><sort><creationdate>202202</creationdate><title>Defence‐related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae</title><author>Nunes da Silva, Marta ; Carvalho, Susana M. P. ; Rodrigues, Ana M. ; Gómez‐Cadenas, ‪Aurelio ; António, Carla ; Vasconcelos, Marta W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3534-2576294cdac04117384ce05d6753dbb6ee1cd6cba10152ace6e7d5f4a53854673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abscisic acid</topic><topic>Actinidia</topic><topic>Actinidia - microbiology</topic><topic>Actinidia - physiology</topic><topic>Actinidia arguta</topic><topic>Ammonia</topic><topic>ammonia assimilation cycle</topic><topic>Genotypes</topic><topic>Glutamine</topic><topic>Host Microbial Interactions</topic><topic>Jasmonic acid</topic><topic>Kiwifruit</topic><topic>kiwifruit bacterial canker</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Ornithine</topic><topic>Pandemics</topic><topic>Phenotypes</topic><topic>Phytohormones</topic><topic>Plant bacterial diseases</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant hormones</topic><topic>Plant Immunity - physiology</topic><topic>Pseudomonas</topic><topic>Pseudomonas syringae</topic><topic>Pseudomonas syringae - physiology</topic><topic>Salicylic acid</topic><topic>susceptibility</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><topic>whole‐transcriptome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nunes da Silva, Marta</creatorcontrib><creatorcontrib>Carvalho, Susana M. P.</creatorcontrib><creatorcontrib>Rodrigues, Ana M.</creatorcontrib><creatorcontrib>Gómez‐Cadenas, ‪Aurelio</creatorcontrib><creatorcontrib>António, Carla</creatorcontrib><creatorcontrib>Vasconcelos, Marta W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nunes da Silva, Marta</au><au>Carvalho, Susana M. P.</au><au>Rodrigues, Ana M.</au><au>Gómez‐Cadenas, ‪Aurelio</au><au>António, Carla</au><au>Vasconcelos, Marta W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defence‐related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2022-02</date><risdate>2022</risdate><volume>45</volume><issue>2</issue><spage>528</spage><epage>541</epage><pages>528-541</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><abstract>The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant‐defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10‐fold higher in A. chinensis var. deliciosa than in Actinidia arguta, accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2‐fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7‐fold), no changes in primary metabolites, and 20 defence‐related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA, which may contribute to its higher tolerance. Results suggest that A. chinensis' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection. Summary Statement The pandemic bacterium P. syringae pv. actinidiae is currently the most important pathogen affecting kiwifruit productivity worldwide. Given the absence of sustainable and effective mitigation strategies, it is imperative to understand plant tolerance mechanisms that could support crop improvement and better agronomical practices. Here, we found that plant susceptibility to Psa results from an inefficient activation of plant defences, involving the jasmonic acid and salicylic acid pathways, and leads to impairments in primary metabolism, particularly the ammonia assimilation cycle. Tolerance is most likely due to a more strategic defensive and metabolic readjustment, resulting from the activation of specific defence‐related genes and to the downregulation of the abscisic acid pathway.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34773419</pmid><doi>10.1111/pce.14224</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6747-1243</orcidid><orcidid>https://orcid.org/0000-0002-5110-7006</orcidid><orcidid>https://orcid.org/0000-0001-8228-0576</orcidid><orcidid>https://orcid.org/0000-0002-4598-2664</orcidid><orcidid>https://orcid.org/0000-0001-7157-1079</orcidid><orcidid>https://orcid.org/0000-0003-3257-9777</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0140-7791
ispartof Plant, cell and environment, 2022-02, Vol.45 (2), p.528-541
issn 0140-7791
1365-3040
language eng
recordid cdi_proquest_miscellaneous_2597496572
source Wiley Free Content; Wiley Online Library - AutoHoldings Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Abscisic acid
Actinidia
Actinidia - microbiology
Actinidia - physiology
Actinidia arguta
Ammonia
ammonia assimilation cycle
Genotypes
Glutamine
Host Microbial Interactions
Jasmonic acid
Kiwifruit
kiwifruit bacterial canker
Metabolic disorders
Metabolism
Metabolites
Metabolomics
Ornithine
Pandemics
Phenotypes
Phytohormones
Plant bacterial diseases
Plant Diseases - microbiology
Plant Growth Regulators - metabolism
Plant hormones
Plant Immunity - physiology
Pseudomonas
Pseudomonas syringae
Pseudomonas syringae - physiology
Salicylic acid
susceptibility
Transcriptomes
Transcriptomics
whole‐transcriptome sequencing
title Defence‐related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defence%E2%80%90related%20pathways,%20phytohormones%20and%20primary%20metabolism%20are%20key%20players%20in%20kiwifruit%20plant%20tolerance%20to%20Pseudomonas%20syringae%20pv.%20actinidiae&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Nunes%20da%20Silva,%20Marta&rft.date=2022-02&rft.volume=45&rft.issue=2&rft.spage=528&rft.epage=541&rft.pages=528-541&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.14224&rft_dat=%3Cproquest_cross%3E2620956295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620956295&rft_id=info:pmid/34773419&rfr_iscdi=true