Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness

Background Diffusion‐weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. Purpose To compare 14 site‐specific parametric fitting implementations applied to the same dataset of whole‐mount pathologically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2022-06, Vol.55 (6), p.1745-1758
Hauptverfasser: McGarry, Sean D., Brehler, Michael, Bukowy, John D., Lowman, Allison K., Bobholz, Samuel A., Duenweg, Savannah R., Banerjee, Anjishnu, Hurrell, Sarah L., Malyarenko, Dariya, Chenevert, Thomas L., Cao, Yue, Li, Yuan, You, Daekeun, Fedorov, Andrey, Bell, Laura C., Quarles, C. Chad, Prah, Melissa A., Schmainda, Kathleen M., Taouli, Bachir, LoCastro, Eve, Mazaheri, Yousef, Shukla‐Dave, Amita, Yankeelov, Thomas E., Hormuth, David A., Madhuranthakam, Ananth J., Hulsey, Keith, Li, Kurt, Huang, Wei, Muzi, Mark, Jacobs, Michael A., Solaiyappan, Meiyappan, Hectors, Stefanie, Antic, Tatjana, Paner, Gladell P., Palangmonthip, Watchareepohn, Jacobsohn, Kenneth, Hohenwalter, Mark, Duvnjak, Petar, Griffin, Michael, See, William, Nevalainen, Marja T., Iczkowski, Kenneth A., LaViolette, Peter S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1758
container_issue 6
container_start_page 1745
container_title Journal of magnetic resonance imaging
container_volume 55
creator McGarry, Sean D.
Brehler, Michael
Bukowy, John D.
Lowman, Allison K.
Bobholz, Samuel A.
Duenweg, Savannah R.
Banerjee, Anjishnu
Hurrell, Sarah L.
Malyarenko, Dariya
Chenevert, Thomas L.
Cao, Yue
Li, Yuan
You, Daekeun
Fedorov, Andrey
Bell, Laura C.
Quarles, C. Chad
Prah, Melissa A.
Schmainda, Kathleen M.
Taouli, Bachir
LoCastro, Eve
Mazaheri, Yousef
Shukla‐Dave, Amita
Yankeelov, Thomas E.
Hormuth, David A.
Madhuranthakam, Ananth J.
Hulsey, Keith
Li, Kurt
Huang, Wei
Huang, Wei
Muzi, Mark
Jacobs, Michael A.
Solaiyappan, Meiyappan
Hectors, Stefanie
Antic, Tatjana
Paner, Gladell P.
Palangmonthip, Watchareepohn
Jacobsohn, Kenneth
Hohenwalter, Mark
Duvnjak, Petar
Griffin, Michael
See, William
Nevalainen, Marja T.
Iczkowski, Kenneth A.
LaViolette, Peter S.
description Background Diffusion‐weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. Purpose To compare 14 site‐specific parametric fitting implementations applied to the same dataset of whole‐mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms. Study Type Prospective. Population Thirty‐three patients prospectively imaged prior to prostatectomy. Field Strength/Sequence 3 T, field‐of‐view optimized and constrained undistorted single‐shot DWI sequence. Assessment Datasets, including a noise‐free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono‐exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi‐exponential diffusion (BID), pseudo‐diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC). Statistical Test Levene's test, P 
doi_str_mv 10.1002/jmri.27983
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2597491136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597491136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3933-dce551800c61f386c2a01043e9e3ec74aff00fdd5c3cc5909cf896c00a7954483</originalsourceid><addsrcrecordid>eNp9kctu1TAURa0K1Bed8AEoEpOqUsrxM_awuuVxUSterTq0jGMHXyVxayegzvgEvpEvweEWBgwYHUt7aen4bISeYjjFAOTFZkjhlDRK0h20jzkhNeFSPCpv4LTGEpo9dJDzBgCUYnwX7VHWiEZIso-my7mfws_vPz6FyVWrONqYWjNaV0VfnQfv5xziWPIbF7ovk2ur9WC6MHbVh9mMU_DBmqkQlY-pOsvZ5byE71PMk1mMi6skXZeW6Ksby3iCHnvTZ3f0MA_R9auXV6s39cW71-vV2UVtqaK0bq3jvKwPVmBPpbDEAAZGnXLU2YYZ7wF823JLreUKlPVSCQtgGsUZk_QQHW-9tynezS5PegjZur43o4tz1oSrhimMqSjo83_QTZzTWLbTRAiCqWSSFepkS9nyv5yc17cpDCbdawx66UIvXejfXRT42YNy_jy49i_65_gFwFvgW-jd_X9U-u3lx_VW-gte1JdR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662138484</pqid></control><display><type>article</type><title>Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>McGarry, Sean D. ; Brehler, Michael ; Bukowy, John D. ; Lowman, Allison K. ; Bobholz, Samuel A. ; Duenweg, Savannah R. ; Banerjee, Anjishnu ; Hurrell, Sarah L. ; Malyarenko, Dariya ; Chenevert, Thomas L. ; Cao, Yue ; Li, Yuan ; You, Daekeun ; Fedorov, Andrey ; Bell, Laura C. ; Quarles, C. Chad ; Prah, Melissa A. ; Schmainda, Kathleen M. ; Taouli, Bachir ; LoCastro, Eve ; Mazaheri, Yousef ; Shukla‐Dave, Amita ; Yankeelov, Thomas E. ; Hormuth, David A. ; Madhuranthakam, Ananth J. ; Hulsey, Keith ; Li, Kurt ; Huang, Wei ; Huang, Wei ; Muzi, Mark ; Jacobs, Michael A. ; Solaiyappan, Meiyappan ; Hectors, Stefanie ; Antic, Tatjana ; Paner, Gladell P. ; Palangmonthip, Watchareepohn ; Jacobsohn, Kenneth ; Hohenwalter, Mark ; Duvnjak, Petar ; Griffin, Michael ; See, William ; Nevalainen, Marja T. ; Iczkowski, Kenneth A. ; LaViolette, Peter S.</creator><creatorcontrib>McGarry, Sean D. ; Brehler, Michael ; Bukowy, John D. ; Lowman, Allison K. ; Bobholz, Samuel A. ; Duenweg, Savannah R. ; Banerjee, Anjishnu ; Hurrell, Sarah L. ; Malyarenko, Dariya ; Chenevert, Thomas L. ; Cao, Yue ; Li, Yuan ; You, Daekeun ; Fedorov, Andrey ; Bell, Laura C. ; Quarles, C. Chad ; Prah, Melissa A. ; Schmainda, Kathleen M. ; Taouli, Bachir ; LoCastro, Eve ; Mazaheri, Yousef ; Shukla‐Dave, Amita ; Yankeelov, Thomas E. ; Hormuth, David A. ; Madhuranthakam, Ananth J. ; Hulsey, Keith ; Li, Kurt ; Huang, Wei ; Huang, Wei ; Muzi, Mark ; Jacobs, Michael A. ; Solaiyappan, Meiyappan ; Hectors, Stefanie ; Antic, Tatjana ; Paner, Gladell P. ; Palangmonthip, Watchareepohn ; Jacobsohn, Kenneth ; Hohenwalter, Mark ; Duvnjak, Petar ; Griffin, Michael ; See, William ; Nevalainen, Marja T. ; Iczkowski, Kenneth A. ; LaViolette, Peter S.</creatorcontrib><description>Background Diffusion‐weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. Purpose To compare 14 site‐specific parametric fitting implementations applied to the same dataset of whole‐mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms. Study Type Prospective. Population Thirty‐three patients prospectively imaged prior to prostatectomy. Field Strength/Sequence 3 T, field‐of‐view optimized and constrained undistorted single‐shot DWI sequence. Assessment Datasets, including a noise‐free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono‐exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi‐exponential diffusion (BID), pseudo‐diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC). Statistical Test Levene's test, P &lt; 0.05 corrected for multiple comparisons was considered statistically significant. Results The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72–0.76, 0.76–0.81, and 0.76–0.80 respectively) as compared to bi‐exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53–0.80, 0.51–0.81, and 0.52–0.80 respectively). Post‐processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size. Data Conclusion We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post‐processing decisions on DWI data can affect sensitivity and specificity when applied to radiological–pathological studies in prostate cancer. Level of Evidence 1 Technical Efficacy Stage 3</description><identifier>ISSN: 1053-1807</identifier><identifier>ISSN: 1522-2586</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.27983</identifier><identifier>PMID: 34767682</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; cancer ; Cancer surgery ; Datasets ; Differentiation ; Diffusion ; Diffusion coefficient ; Diffusion Magnetic Resonance Imaging - methods ; Discordance ; Field strength ; Humans ; Kurtosis ; Magnetic resonance imaging ; Male ; Medical imaging ; MRI ; multisite |modelling ; Perfusion ; Population studies ; Process parameters ; Prospective Studies ; prostate ; Prostate cancer ; Prostatectomy ; Prostatic Neoplasms - diagnostic imaging ; Retrospective Studies ; ROC Curve ; Sensitivity and Specificity ; Statistical analysis ; Statistical tests ; Urological surgery</subject><ispartof>Journal of magnetic resonance imaging, 2022-06, Vol.55 (6), p.1745-1758</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2021 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3933-dce551800c61f386c2a01043e9e3ec74aff00fdd5c3cc5909cf896c00a7954483</citedby><cites>FETCH-LOGICAL-c3933-dce551800c61f386c2a01043e9e3ec74aff00fdd5c3cc5909cf896c00a7954483</cites><orcidid>0000-0003-3975-8153 ; 0000-0002-9602-6891 ; 0000-0001-7456-3197 ; 0000-0001-6409-1333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.27983$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.27983$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34767682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGarry, Sean D.</creatorcontrib><creatorcontrib>Brehler, Michael</creatorcontrib><creatorcontrib>Bukowy, John D.</creatorcontrib><creatorcontrib>Lowman, Allison K.</creatorcontrib><creatorcontrib>Bobholz, Samuel A.</creatorcontrib><creatorcontrib>Duenweg, Savannah R.</creatorcontrib><creatorcontrib>Banerjee, Anjishnu</creatorcontrib><creatorcontrib>Hurrell, Sarah L.</creatorcontrib><creatorcontrib>Malyarenko, Dariya</creatorcontrib><creatorcontrib>Chenevert, Thomas L.</creatorcontrib><creatorcontrib>Cao, Yue</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>You, Daekeun</creatorcontrib><creatorcontrib>Fedorov, Andrey</creatorcontrib><creatorcontrib>Bell, Laura C.</creatorcontrib><creatorcontrib>Quarles, C. Chad</creatorcontrib><creatorcontrib>Prah, Melissa A.</creatorcontrib><creatorcontrib>Schmainda, Kathleen M.</creatorcontrib><creatorcontrib>Taouli, Bachir</creatorcontrib><creatorcontrib>LoCastro, Eve</creatorcontrib><creatorcontrib>Mazaheri, Yousef</creatorcontrib><creatorcontrib>Shukla‐Dave, Amita</creatorcontrib><creatorcontrib>Yankeelov, Thomas E.</creatorcontrib><creatorcontrib>Hormuth, David A.</creatorcontrib><creatorcontrib>Madhuranthakam, Ananth J.</creatorcontrib><creatorcontrib>Hulsey, Keith</creatorcontrib><creatorcontrib>Li, Kurt</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Muzi, Mark</creatorcontrib><creatorcontrib>Jacobs, Michael A.</creatorcontrib><creatorcontrib>Solaiyappan, Meiyappan</creatorcontrib><creatorcontrib>Hectors, Stefanie</creatorcontrib><creatorcontrib>Antic, Tatjana</creatorcontrib><creatorcontrib>Paner, Gladell P.</creatorcontrib><creatorcontrib>Palangmonthip, Watchareepohn</creatorcontrib><creatorcontrib>Jacobsohn, Kenneth</creatorcontrib><creatorcontrib>Hohenwalter, Mark</creatorcontrib><creatorcontrib>Duvnjak, Petar</creatorcontrib><creatorcontrib>Griffin, Michael</creatorcontrib><creatorcontrib>See, William</creatorcontrib><creatorcontrib>Nevalainen, Marja T.</creatorcontrib><creatorcontrib>Iczkowski, Kenneth A.</creatorcontrib><creatorcontrib>LaViolette, Peter S.</creatorcontrib><title>Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Diffusion‐weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. Purpose To compare 14 site‐specific parametric fitting implementations applied to the same dataset of whole‐mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms. Study Type Prospective. Population Thirty‐three patients prospectively imaged prior to prostatectomy. Field Strength/Sequence 3 T, field‐of‐view optimized and constrained undistorted single‐shot DWI sequence. Assessment Datasets, including a noise‐free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono‐exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi‐exponential diffusion (BID), pseudo‐diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC). Statistical Test Levene's test, P &lt; 0.05 corrected for multiple comparisons was considered statistically significant. Results The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72–0.76, 0.76–0.81, and 0.76–0.80 respectively) as compared to bi‐exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53–0.80, 0.51–0.81, and 0.52–0.80 respectively). Post‐processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size. Data Conclusion We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post‐processing decisions on DWI data can affect sensitivity and specificity when applied to radiological–pathological studies in prostate cancer. Level of Evidence 1 Technical Efficacy Stage 3</description><subject>Algorithms</subject><subject>cancer</subject><subject>Cancer surgery</subject><subject>Datasets</subject><subject>Differentiation</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Discordance</subject><subject>Field strength</subject><subject>Humans</subject><subject>Kurtosis</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>MRI</subject><subject>multisite |modelling</subject><subject>Perfusion</subject><subject>Population studies</subject><subject>Process parameters</subject><subject>Prospective Studies</subject><subject>prostate</subject><subject>Prostate cancer</subject><subject>Prostatectomy</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Sensitivity and Specificity</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Urological surgery</subject><issn>1053-1807</issn><issn>1522-2586</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kctu1TAURa0K1Bed8AEoEpOqUsrxM_awuuVxUSterTq0jGMHXyVxayegzvgEvpEvweEWBgwYHUt7aen4bISeYjjFAOTFZkjhlDRK0h20jzkhNeFSPCpv4LTGEpo9dJDzBgCUYnwX7VHWiEZIso-my7mfws_vPz6FyVWrONqYWjNaV0VfnQfv5xziWPIbF7ovk2ur9WC6MHbVh9mMU_DBmqkQlY-pOsvZ5byE71PMk1mMi6skXZeW6Ksby3iCHnvTZ3f0MA_R9auXV6s39cW71-vV2UVtqaK0bq3jvKwPVmBPpbDEAAZGnXLU2YYZ7wF823JLreUKlPVSCQtgGsUZk_QQHW-9tynezS5PegjZur43o4tz1oSrhimMqSjo83_QTZzTWLbTRAiCqWSSFepkS9nyv5yc17cpDCbdawx66UIvXejfXRT42YNy_jy49i_65_gFwFvgW-jd_X9U-u3lx_VW-gte1JdR</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>McGarry, Sean D.</creator><creator>Brehler, Michael</creator><creator>Bukowy, John D.</creator><creator>Lowman, Allison K.</creator><creator>Bobholz, Samuel A.</creator><creator>Duenweg, Savannah R.</creator><creator>Banerjee, Anjishnu</creator><creator>Hurrell, Sarah L.</creator><creator>Malyarenko, Dariya</creator><creator>Chenevert, Thomas L.</creator><creator>Cao, Yue</creator><creator>Li, Yuan</creator><creator>You, Daekeun</creator><creator>Fedorov, Andrey</creator><creator>Bell, Laura C.</creator><creator>Quarles, C. Chad</creator><creator>Prah, Melissa A.</creator><creator>Schmainda, Kathleen M.</creator><creator>Taouli, Bachir</creator><creator>LoCastro, Eve</creator><creator>Mazaheri, Yousef</creator><creator>Shukla‐Dave, Amita</creator><creator>Yankeelov, Thomas E.</creator><creator>Hormuth, David A.</creator><creator>Madhuranthakam, Ananth J.</creator><creator>Hulsey, Keith</creator><creator>Li, Kurt</creator><creator>Huang, Wei</creator><creator>Huang, Wei</creator><creator>Muzi, Mark</creator><creator>Jacobs, Michael A.</creator><creator>Solaiyappan, Meiyappan</creator><creator>Hectors, Stefanie</creator><creator>Antic, Tatjana</creator><creator>Paner, Gladell P.</creator><creator>Palangmonthip, Watchareepohn</creator><creator>Jacobsohn, Kenneth</creator><creator>Hohenwalter, Mark</creator><creator>Duvnjak, Petar</creator><creator>Griffin, Michael</creator><creator>See, William</creator><creator>Nevalainen, Marja T.</creator><creator>Iczkowski, Kenneth A.</creator><creator>LaViolette, Peter S.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3975-8153</orcidid><orcidid>https://orcid.org/0000-0002-9602-6891</orcidid><orcidid>https://orcid.org/0000-0001-7456-3197</orcidid><orcidid>https://orcid.org/0000-0001-6409-1333</orcidid></search><sort><creationdate>202206</creationdate><title>Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness</title><author>McGarry, Sean D. ; Brehler, Michael ; Bukowy, John D. ; Lowman, Allison K. ; Bobholz, Samuel A. ; Duenweg, Savannah R. ; Banerjee, Anjishnu ; Hurrell, Sarah L. ; Malyarenko, Dariya ; Chenevert, Thomas L. ; Cao, Yue ; Li, Yuan ; You, Daekeun ; Fedorov, Andrey ; Bell, Laura C. ; Quarles, C. Chad ; Prah, Melissa A. ; Schmainda, Kathleen M. ; Taouli, Bachir ; LoCastro, Eve ; Mazaheri, Yousef ; Shukla‐Dave, Amita ; Yankeelov, Thomas E. ; Hormuth, David A. ; Madhuranthakam, Ananth J. ; Hulsey, Keith ; Li, Kurt ; Huang, Wei ; Huang, Wei ; Muzi, Mark ; Jacobs, Michael A. ; Solaiyappan, Meiyappan ; Hectors, Stefanie ; Antic, Tatjana ; Paner, Gladell P. ; Palangmonthip, Watchareepohn ; Jacobsohn, Kenneth ; Hohenwalter, Mark ; Duvnjak, Petar ; Griffin, Michael ; See, William ; Nevalainen, Marja T. ; Iczkowski, Kenneth A. ; LaViolette, Peter S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3933-dce551800c61f386c2a01043e9e3ec74aff00fdd5c3cc5909cf896c00a7954483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>cancer</topic><topic>Cancer surgery</topic><topic>Datasets</topic><topic>Differentiation</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Discordance</topic><topic>Field strength</topic><topic>Humans</topic><topic>Kurtosis</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>MRI</topic><topic>multisite |modelling</topic><topic>Perfusion</topic><topic>Population studies</topic><topic>Process parameters</topic><topic>Prospective Studies</topic><topic>prostate</topic><topic>Prostate cancer</topic><topic>Prostatectomy</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Sensitivity and Specificity</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Urological surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGarry, Sean D.</creatorcontrib><creatorcontrib>Brehler, Michael</creatorcontrib><creatorcontrib>Bukowy, John D.</creatorcontrib><creatorcontrib>Lowman, Allison K.</creatorcontrib><creatorcontrib>Bobholz, Samuel A.</creatorcontrib><creatorcontrib>Duenweg, Savannah R.</creatorcontrib><creatorcontrib>Banerjee, Anjishnu</creatorcontrib><creatorcontrib>Hurrell, Sarah L.</creatorcontrib><creatorcontrib>Malyarenko, Dariya</creatorcontrib><creatorcontrib>Chenevert, Thomas L.</creatorcontrib><creatorcontrib>Cao, Yue</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>You, Daekeun</creatorcontrib><creatorcontrib>Fedorov, Andrey</creatorcontrib><creatorcontrib>Bell, Laura C.</creatorcontrib><creatorcontrib>Quarles, C. Chad</creatorcontrib><creatorcontrib>Prah, Melissa A.</creatorcontrib><creatorcontrib>Schmainda, Kathleen M.</creatorcontrib><creatorcontrib>Taouli, Bachir</creatorcontrib><creatorcontrib>LoCastro, Eve</creatorcontrib><creatorcontrib>Mazaheri, Yousef</creatorcontrib><creatorcontrib>Shukla‐Dave, Amita</creatorcontrib><creatorcontrib>Yankeelov, Thomas E.</creatorcontrib><creatorcontrib>Hormuth, David A.</creatorcontrib><creatorcontrib>Madhuranthakam, Ananth J.</creatorcontrib><creatorcontrib>Hulsey, Keith</creatorcontrib><creatorcontrib>Li, Kurt</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Muzi, Mark</creatorcontrib><creatorcontrib>Jacobs, Michael A.</creatorcontrib><creatorcontrib>Solaiyappan, Meiyappan</creatorcontrib><creatorcontrib>Hectors, Stefanie</creatorcontrib><creatorcontrib>Antic, Tatjana</creatorcontrib><creatorcontrib>Paner, Gladell P.</creatorcontrib><creatorcontrib>Palangmonthip, Watchareepohn</creatorcontrib><creatorcontrib>Jacobsohn, Kenneth</creatorcontrib><creatorcontrib>Hohenwalter, Mark</creatorcontrib><creatorcontrib>Duvnjak, Petar</creatorcontrib><creatorcontrib>Griffin, Michael</creatorcontrib><creatorcontrib>See, William</creatorcontrib><creatorcontrib>Nevalainen, Marja T.</creatorcontrib><creatorcontrib>Iczkowski, Kenneth A.</creatorcontrib><creatorcontrib>LaViolette, Peter S.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGarry, Sean D.</au><au>Brehler, Michael</au><au>Bukowy, John D.</au><au>Lowman, Allison K.</au><au>Bobholz, Samuel A.</au><au>Duenweg, Savannah R.</au><au>Banerjee, Anjishnu</au><au>Hurrell, Sarah L.</au><au>Malyarenko, Dariya</au><au>Chenevert, Thomas L.</au><au>Cao, Yue</au><au>Li, Yuan</au><au>You, Daekeun</au><au>Fedorov, Andrey</au><au>Bell, Laura C.</au><au>Quarles, C. Chad</au><au>Prah, Melissa A.</au><au>Schmainda, Kathleen M.</au><au>Taouli, Bachir</au><au>LoCastro, Eve</au><au>Mazaheri, Yousef</au><au>Shukla‐Dave, Amita</au><au>Yankeelov, Thomas E.</au><au>Hormuth, David A.</au><au>Madhuranthakam, Ananth J.</au><au>Hulsey, Keith</au><au>Li, Kurt</au><au>Huang, Wei</au><au>Huang, Wei</au><au>Muzi, Mark</au><au>Jacobs, Michael A.</au><au>Solaiyappan, Meiyappan</au><au>Hectors, Stefanie</au><au>Antic, Tatjana</au><au>Paner, Gladell P.</au><au>Palangmonthip, Watchareepohn</au><au>Jacobsohn, Kenneth</au><au>Hohenwalter, Mark</au><au>Duvnjak, Petar</au><au>Griffin, Michael</au><au>See, William</au><au>Nevalainen, Marja T.</au><au>Iczkowski, Kenneth A.</au><au>LaViolette, Peter S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2022-06</date><risdate>2022</risdate><volume>55</volume><issue>6</issue><spage>1745</spage><epage>1758</epage><pages>1745-1758</pages><issn>1053-1807</issn><issn>1522-2586</issn><eissn>1522-2586</eissn><abstract>Background Diffusion‐weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. Purpose To compare 14 site‐specific parametric fitting implementations applied to the same dataset of whole‐mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms. Study Type Prospective. Population Thirty‐three patients prospectively imaged prior to prostatectomy. Field Strength/Sequence 3 T, field‐of‐view optimized and constrained undistorted single‐shot DWI sequence. Assessment Datasets, including a noise‐free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono‐exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi‐exponential diffusion (BID), pseudo‐diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC). Statistical Test Levene's test, P &lt; 0.05 corrected for multiple comparisons was considered statistically significant. Results The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72–0.76, 0.76–0.81, and 0.76–0.80 respectively) as compared to bi‐exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53–0.80, 0.51–0.81, and 0.52–0.80 respectively). Post‐processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size. Data Conclusion We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post‐processing decisions on DWI data can affect sensitivity and specificity when applied to radiological–pathological studies in prostate cancer. Level of Evidence 1 Technical Efficacy Stage 3</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34767682</pmid><doi>10.1002/jmri.27983</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3975-8153</orcidid><orcidid>https://orcid.org/0000-0002-9602-6891</orcidid><orcidid>https://orcid.org/0000-0001-7456-3197</orcidid><orcidid>https://orcid.org/0000-0001-6409-1333</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2022-06, Vol.55 (6), p.1745-1758
issn 1053-1807
1522-2586
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2597491136
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
cancer
Cancer surgery
Datasets
Differentiation
Diffusion
Diffusion coefficient
Diffusion Magnetic Resonance Imaging - methods
Discordance
Field strength
Humans
Kurtosis
Magnetic resonance imaging
Male
Medical imaging
MRI
multisite |modelling
Perfusion
Population studies
Process parameters
Prospective Studies
prostate
Prostate cancer
Prostatectomy
Prostatic Neoplasms - diagnostic imaging
Retrospective Studies
ROC Curve
Sensitivity and Specificity
Statistical analysis
Statistical tests
Urological surgery
title Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90Site%20Concordance%20of%20Diffusion%E2%80%90Weighted%20Imaging%20Quantification%20for%20Assessing%20Prostate%20Cancer%20Aggressiveness&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=McGarry,%20Sean%20D.&rft.date=2022-06&rft.volume=55&rft.issue=6&rft.spage=1745&rft.epage=1758&rft.pages=1745-1758&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.27983&rft_dat=%3Cproquest_cross%3E2597491136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662138484&rft_id=info:pmid/34767682&rfr_iscdi=true