Assessment of diabetic small‐fiber neuropathy by using short‐wave infrared hyperspectral imaging

Among patients with type 2 diabetes mellitus (T2DM), the association between hyperspectral imaging (HSI) examination and diabetic neuropathy (DN) is ascertained using HSI of the feet using four types of spectral difference measurements. DN was evaluated by traditional Michigan Neuropathy Screening I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biophotonics 2022-02, Vol.15 (2), p.e202100220-n/a
Hauptverfasser: Sheen, Yi‐Jing, Sheu, Wayne Huey‐Herng, Wang, Hsin‐Che, Chen, Jun‐Peng, Sun, Yi‐Hsuan, Chen, Hsian‐Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e202100220
container_title Journal of biophotonics
container_volume 15
creator Sheen, Yi‐Jing
Sheu, Wayne Huey‐Herng
Wang, Hsin‐Che
Chen, Jun‐Peng
Sun, Yi‐Hsuan
Chen, Hsian‐Min
description Among patients with type 2 diabetes mellitus (T2DM), the association between hyperspectral imaging (HSI) examination and diabetic neuropathy (DN) is ascertained using HSI of the feet using four types of spectral difference measurements. DN was evaluated by traditional Michigan Neuropathy Screening Instrument (MNSI), evaluation of painful neuropathy (ID‐Pain, DN4) and sudomotor function by measuring electrochemical skin conductance (ESC). Of the 120 T2DM patients and 20 healthy adults enrolled, T2DM patients are categorized into normal sudomotor (ESC >60 μS) and sudomotor dysfunction (ESC ≤ 60 μS) groups. Spectral difference analyses reveal significant intergroup differences, whereas traditional examinations cannot distinguish between the two groups. HSI waveform reflectance gradually increases with disease severity, at 1400 to 1600 nm. The area under the curve (AUC) of receiver operating characteristic (ROC) analysis for abnormal ESC is ≥0.8 for all four HSI methods. HSI could be an objective, sensitive, rapid, noninvasive and remote approach to identify early small‐fiber DN. Color image, the results of MNSI (location colored red: insensate areas to 10‐gm Semmes‐Weinstein monofilament testing), spectral difference analysis image (SAM) and spectral waveform on DMF042 subject.
doi_str_mv 10.1002/jbio.202100220
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2597489941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597489941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-47481e138f38d71e69df98011af1019c8cf48b41c039242d7ca035ea5e0170d63</originalsourceid><addsrcrecordid>eNqF0LtuFDEUBmALgUgItJTIEg3NLseXHdtliLgERUoDEp3l8RxnvZob9kyi6fIIeUaeBK82LBINlW3p82-fn5DXDNYMgL_f1XFYc-D7A4cn5JTpSq6gkvrpcS9-nJAXOe8AKhAb8ZycCKmqSnFzSprznDHnDvuJDoE20dU4RU9z59r21_1DiDUm2uOchtFN24XWC51z7G9o3g5pKuLO3SKNfUguYUO3y4gpj-in5FoaO3dT7EvyLLg246vH9Yx8__Tx28WX1dX158uL86uVF0rASiqpGTKhg9CNYliZJhgNjLnAgBmvfZC6lsyDMFzyRnlX5kG3QWAKmkqckXeH3DENP2fMk-1i9ti2rsdhzpZvTHnCGMkKffsP3Q1z6svvLK-4VAa04kWtD8qnIeeEwY6pzJQWy8DuK7f7_u2x_3LhzWPsXHfYHPmfwgswB3AXW1z-E2e_fri8_hv-G6SBk-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624790872</pqid></control><display><type>article</type><title>Assessment of diabetic small‐fiber neuropathy by using short‐wave infrared hyperspectral imaging</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Sheen, Yi‐Jing ; Sheu, Wayne Huey‐Herng ; Wang, Hsin‐Che ; Chen, Jun‐Peng ; Sun, Yi‐Hsuan ; Chen, Hsian‐Min</creator><creatorcontrib>Sheen, Yi‐Jing ; Sheu, Wayne Huey‐Herng ; Wang, Hsin‐Che ; Chen, Jun‐Peng ; Sun, Yi‐Hsuan ; Chen, Hsian‐Min</creatorcontrib><description>Among patients with type 2 diabetes mellitus (T2DM), the association between hyperspectral imaging (HSI) examination and diabetic neuropathy (DN) is ascertained using HSI of the feet using four types of spectral difference measurements. DN was evaluated by traditional Michigan Neuropathy Screening Instrument (MNSI), evaluation of painful neuropathy (ID‐Pain, DN4) and sudomotor function by measuring electrochemical skin conductance (ESC). Of the 120 T2DM patients and 20 healthy adults enrolled, T2DM patients are categorized into normal sudomotor (ESC &gt;60 μS) and sudomotor dysfunction (ESC ≤ 60 μS) groups. Spectral difference analyses reveal significant intergroup differences, whereas traditional examinations cannot distinguish between the two groups. HSI waveform reflectance gradually increases with disease severity, at 1400 to 1600 nm. The area under the curve (AUC) of receiver operating characteristic (ROC) analysis for abnormal ESC is ≥0.8 for all four HSI methods. HSI could be an objective, sensitive, rapid, noninvasive and remote approach to identify early small‐fiber DN. Color image, the results of MNSI (location colored red: insensate areas to 10‐gm Semmes‐Weinstein monofilament testing), spectral difference analysis image (SAM) and spectral waveform on DMF042 subject.</description><identifier>ISSN: 1864-063X</identifier><identifier>EISSN: 1864-0648</identifier><identifier>DOI: 10.1002/jbio.202100220</identifier><identifier>PMID: 34766729</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Adult ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - complications ; Diabetes Mellitus, Type 2 - diagnostic imaging ; Diabetic Neuropathies - diagnostic imaging ; Diabetic neuropathy ; diabetic neuropathy (DN) ; electrochemical skin conductance (ESC) ; Electrochemistry ; Evaluation ; Foot ; Galvanic Skin Response ; Humans ; Hyperspectral Imaging ; hyperspectral imaging (HSI) ; Infrared imaging ; Medical imaging ; Pain ; short‐wave infrared (SWIR) ; type 2 diabetes mellitus (T2DM) ; Waveforms</subject><ispartof>Journal of biophotonics, 2022-02, Vol.15 (2), p.e202100220-n/a</ispartof><rights>2021 Wiley‐VCH GmbH.</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-47481e138f38d71e69df98011af1019c8cf48b41c039242d7ca035ea5e0170d63</citedby><cites>FETCH-LOGICAL-c3730-47481e138f38d71e69df98011af1019c8cf48b41c039242d7ca035ea5e0170d63</cites><orcidid>0000-0002-8409-3237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbio.202100220$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbio.202100220$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34766729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheen, Yi‐Jing</creatorcontrib><creatorcontrib>Sheu, Wayne Huey‐Herng</creatorcontrib><creatorcontrib>Wang, Hsin‐Che</creatorcontrib><creatorcontrib>Chen, Jun‐Peng</creatorcontrib><creatorcontrib>Sun, Yi‐Hsuan</creatorcontrib><creatorcontrib>Chen, Hsian‐Min</creatorcontrib><title>Assessment of diabetic small‐fiber neuropathy by using short‐wave infrared hyperspectral imaging</title><title>Journal of biophotonics</title><addtitle>J Biophotonics</addtitle><description>Among patients with type 2 diabetes mellitus (T2DM), the association between hyperspectral imaging (HSI) examination and diabetic neuropathy (DN) is ascertained using HSI of the feet using four types of spectral difference measurements. DN was evaluated by traditional Michigan Neuropathy Screening Instrument (MNSI), evaluation of painful neuropathy (ID‐Pain, DN4) and sudomotor function by measuring electrochemical skin conductance (ESC). Of the 120 T2DM patients and 20 healthy adults enrolled, T2DM patients are categorized into normal sudomotor (ESC &gt;60 μS) and sudomotor dysfunction (ESC ≤ 60 μS) groups. Spectral difference analyses reveal significant intergroup differences, whereas traditional examinations cannot distinguish between the two groups. HSI waveform reflectance gradually increases with disease severity, at 1400 to 1600 nm. The area under the curve (AUC) of receiver operating characteristic (ROC) analysis for abnormal ESC is ≥0.8 for all four HSI methods. HSI could be an objective, sensitive, rapid, noninvasive and remote approach to identify early small‐fiber DN. Color image, the results of MNSI (location colored red: insensate areas to 10‐gm Semmes‐Weinstein monofilament testing), spectral difference analysis image (SAM) and spectral waveform on DMF042 subject.</description><subject>Adult</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - complications</subject><subject>Diabetes Mellitus, Type 2 - diagnostic imaging</subject><subject>Diabetic Neuropathies - diagnostic imaging</subject><subject>Diabetic neuropathy</subject><subject>diabetic neuropathy (DN)</subject><subject>electrochemical skin conductance (ESC)</subject><subject>Electrochemistry</subject><subject>Evaluation</subject><subject>Foot</subject><subject>Galvanic Skin Response</subject><subject>Humans</subject><subject>Hyperspectral Imaging</subject><subject>hyperspectral imaging (HSI)</subject><subject>Infrared imaging</subject><subject>Medical imaging</subject><subject>Pain</subject><subject>short‐wave infrared (SWIR)</subject><subject>type 2 diabetes mellitus (T2DM)</subject><subject>Waveforms</subject><issn>1864-063X</issn><issn>1864-0648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0LtuFDEUBmALgUgItJTIEg3NLseXHdtliLgERUoDEp3l8RxnvZob9kyi6fIIeUaeBK82LBINlW3p82-fn5DXDNYMgL_f1XFYc-D7A4cn5JTpSq6gkvrpcS9-nJAXOe8AKhAb8ZycCKmqSnFzSprznDHnDvuJDoE20dU4RU9z59r21_1DiDUm2uOchtFN24XWC51z7G9o3g5pKuLO3SKNfUguYUO3y4gpj-in5FoaO3dT7EvyLLg246vH9Yx8__Tx28WX1dX158uL86uVF0rASiqpGTKhg9CNYliZJhgNjLnAgBmvfZC6lsyDMFzyRnlX5kG3QWAKmkqckXeH3DENP2fMk-1i9ti2rsdhzpZvTHnCGMkKffsP3Q1z6svvLK-4VAa04kWtD8qnIeeEwY6pzJQWy8DuK7f7_u2x_3LhzWPsXHfYHPmfwgswB3AXW1z-E2e_fri8_hv-G6SBk-Q</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Sheen, Yi‐Jing</creator><creator>Sheu, Wayne Huey‐Herng</creator><creator>Wang, Hsin‐Che</creator><creator>Chen, Jun‐Peng</creator><creator>Sun, Yi‐Hsuan</creator><creator>Chen, Hsian‐Min</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8409-3237</orcidid></search><sort><creationdate>202202</creationdate><title>Assessment of diabetic small‐fiber neuropathy by using short‐wave infrared hyperspectral imaging</title><author>Sheen, Yi‐Jing ; Sheu, Wayne Huey‐Herng ; Wang, Hsin‐Che ; Chen, Jun‐Peng ; Sun, Yi‐Hsuan ; Chen, Hsian‐Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-47481e138f38d71e69df98011af1019c8cf48b41c039242d7ca035ea5e0170d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adult</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - complications</topic><topic>Diabetes Mellitus, Type 2 - diagnostic imaging</topic><topic>Diabetic Neuropathies - diagnostic imaging</topic><topic>Diabetic neuropathy</topic><topic>diabetic neuropathy (DN)</topic><topic>electrochemical skin conductance (ESC)</topic><topic>Electrochemistry</topic><topic>Evaluation</topic><topic>Foot</topic><topic>Galvanic Skin Response</topic><topic>Humans</topic><topic>Hyperspectral Imaging</topic><topic>hyperspectral imaging (HSI)</topic><topic>Infrared imaging</topic><topic>Medical imaging</topic><topic>Pain</topic><topic>short‐wave infrared (SWIR)</topic><topic>type 2 diabetes mellitus (T2DM)</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheen, Yi‐Jing</creatorcontrib><creatorcontrib>Sheu, Wayne Huey‐Herng</creatorcontrib><creatorcontrib>Wang, Hsin‐Che</creatorcontrib><creatorcontrib>Chen, Jun‐Peng</creatorcontrib><creatorcontrib>Sun, Yi‐Hsuan</creatorcontrib><creatorcontrib>Chen, Hsian‐Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biophotonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheen, Yi‐Jing</au><au>Sheu, Wayne Huey‐Herng</au><au>Wang, Hsin‐Che</au><au>Chen, Jun‐Peng</au><au>Sun, Yi‐Hsuan</au><au>Chen, Hsian‐Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of diabetic small‐fiber neuropathy by using short‐wave infrared hyperspectral imaging</atitle><jtitle>Journal of biophotonics</jtitle><addtitle>J Biophotonics</addtitle><date>2022-02</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>e202100220</spage><epage>n/a</epage><pages>e202100220-n/a</pages><issn>1864-063X</issn><eissn>1864-0648</eissn><abstract>Among patients with type 2 diabetes mellitus (T2DM), the association between hyperspectral imaging (HSI) examination and diabetic neuropathy (DN) is ascertained using HSI of the feet using four types of spectral difference measurements. DN was evaluated by traditional Michigan Neuropathy Screening Instrument (MNSI), evaluation of painful neuropathy (ID‐Pain, DN4) and sudomotor function by measuring electrochemical skin conductance (ESC). Of the 120 T2DM patients and 20 healthy adults enrolled, T2DM patients are categorized into normal sudomotor (ESC &gt;60 μS) and sudomotor dysfunction (ESC ≤ 60 μS) groups. Spectral difference analyses reveal significant intergroup differences, whereas traditional examinations cannot distinguish between the two groups. HSI waveform reflectance gradually increases with disease severity, at 1400 to 1600 nm. The area under the curve (AUC) of receiver operating characteristic (ROC) analysis for abnormal ESC is ≥0.8 for all four HSI methods. HSI could be an objective, sensitive, rapid, noninvasive and remote approach to identify early small‐fiber DN. Color image, the results of MNSI (location colored red: insensate areas to 10‐gm Semmes‐Weinstein monofilament testing), spectral difference analysis image (SAM) and spectral waveform on DMF042 subject.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>34766729</pmid><doi>10.1002/jbio.202100220</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8409-3237</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-063X
ispartof Journal of biophotonics, 2022-02, Vol.15 (2), p.e202100220-n/a
issn 1864-063X
1864-0648
language eng
recordid cdi_proquest_miscellaneous_2597489941
source MEDLINE; Wiley Journals
subjects Adult
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - complications
Diabetes Mellitus, Type 2 - diagnostic imaging
Diabetic Neuropathies - diagnostic imaging
Diabetic neuropathy
diabetic neuropathy (DN)
electrochemical skin conductance (ESC)
Electrochemistry
Evaluation
Foot
Galvanic Skin Response
Humans
Hyperspectral Imaging
hyperspectral imaging (HSI)
Infrared imaging
Medical imaging
Pain
short‐wave infrared (SWIR)
type 2 diabetes mellitus (T2DM)
Waveforms
title Assessment of diabetic small‐fiber neuropathy by using short‐wave infrared hyperspectral imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20diabetic%20small%E2%80%90fiber%20neuropathy%20by%20using%20short%E2%80%90wave%20infrared%20hyperspectral%20imaging&rft.jtitle=Journal%20of%20biophotonics&rft.au=Sheen,%20Yi%E2%80%90Jing&rft.date=2022-02&rft.volume=15&rft.issue=2&rft.spage=e202100220&rft.epage=n/a&rft.pages=e202100220-n/a&rft.issn=1864-063X&rft.eissn=1864-0648&rft_id=info:doi/10.1002/jbio.202100220&rft_dat=%3Cproquest_cross%3E2597489941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624790872&rft_id=info:pmid/34766729&rfr_iscdi=true