Conduction mechanisms in erbium silicide Schottky diodes
Conduction mechanisms in erbium silicide Schottky diodes on n-type silicon have been studied over a temperature range of 25 to 160 K. Thermionic emission is the dominant carrier transport mechanism above 70 K. Below this temperature, deviations are apparent in the zero-bias barrier height and ideali...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 1993-04, Vol.73 (8), p.3873-3879 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3879 |
---|---|
container_issue | 8 |
container_start_page | 3873 |
container_title | Journal of applied physics |
container_volume | 73 |
creator | UNEWISSE, M. H STOREY, J. W. V |
description | Conduction mechanisms in erbium silicide Schottky diodes on n-type silicon have been studied over a temperature range of 25 to 160 K. Thermionic emission is the dominant carrier transport mechanism above 70 K. Below this temperature, deviations are apparent in the zero-bias barrier height and ideality factor. However, the flat-band barrier height is shown to remain constant over the entire temperature range. The Fermi level is demonstrated to be pinned to the conduction band. A new quantity, the flat-band saturation current (Isf) is defined. Plots of n ln(Isf/T2) vs 1/T are found to give an excellent fit to the data over 28 orders of magnitude. From these plots the flat-band barrier height and the modified Richardson constant are obtained directly. This technique provides a completely self-consistent and more reliable way of obtaining these parameters than do previous methods. For low temperatures and low forward bias, recombination via tunneling through surface states becomes the dominant conduction mechanism. |
doi_str_mv | 10.1063/1.352899 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25974786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25974786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-1126f63b99245cddd8d3ee6f1a26cab11700f4556519bd49779efd501c7709053</originalsourceid><addsrcrecordid>eNo90D1PwzAUhWELgUQpSPyEDAixpNwbx7E9ooovqRIDMEeO7aiGJC6-ydB_T1EqprM8OsPL2DXCCqHi97jiolBan7AFgtK5FAJO2QKgwFxpqc_ZBdEXAKLiesHUOg5usmOIQ9Z7uzVDoJ6yMGQ-NWHqMwpdsMH57N1u4zh-7zMXovN0yc5a05G_Ou6SfT49fqxf8s3b8-v6YZNbLnDMEYuqrXijdVEK65xTjntftWiKypoGUQK0pRCVQN24UkupfesEoJUSNAi-ZLfz7y7Fn8nTWPeBrO86M_g4UV0ILUupqgO8m6FNkSj5tt6l0Ju0rxHqvzQ11nOaA705fhqypmuTGWygf19KoWQB_BeTt2Fb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25974786</pqid></control><display><type>article</type><title>Conduction mechanisms in erbium silicide Schottky diodes</title><source>AIP Digital Archive</source><creator>UNEWISSE, M. H ; STOREY, J. W. V</creator><creatorcontrib>UNEWISSE, M. H ; STOREY, J. W. V</creatorcontrib><description>Conduction mechanisms in erbium silicide Schottky diodes on n-type silicon have been studied over a temperature range of 25 to 160 K. Thermionic emission is the dominant carrier transport mechanism above 70 K. Below this temperature, deviations are apparent in the zero-bias barrier height and ideality factor. However, the flat-band barrier height is shown to remain constant over the entire temperature range. The Fermi level is demonstrated to be pinned to the conduction band. A new quantity, the flat-band saturation current (Isf) is defined. Plots of n ln(Isf/T2) vs 1/T are found to give an excellent fit to the data over 28 orders of magnitude. From these plots the flat-band barrier height and the modified Richardson constant are obtained directly. This technique provides a completely self-consistent and more reliable way of obtaining these parameters than do previous methods. For low temperatures and low forward bias, recombination via tunneling through surface states becomes the dominant conduction mechanism.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.352899</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Applied sciences ; Diodes ; Electronics ; Exact sciences and technology ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Journal of applied physics, 1993-04, Vol.73 (8), p.3873-3879</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-1126f63b99245cddd8d3ee6f1a26cab11700f4556519bd49779efd501c7709053</citedby><cites>FETCH-LOGICAL-c351t-1126f63b99245cddd8d3ee6f1a26cab11700f4556519bd49779efd501c7709053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4758720$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>UNEWISSE, M. H</creatorcontrib><creatorcontrib>STOREY, J. W. V</creatorcontrib><title>Conduction mechanisms in erbium silicide Schottky diodes</title><title>Journal of applied physics</title><description>Conduction mechanisms in erbium silicide Schottky diodes on n-type silicon have been studied over a temperature range of 25 to 160 K. Thermionic emission is the dominant carrier transport mechanism above 70 K. Below this temperature, deviations are apparent in the zero-bias barrier height and ideality factor. However, the flat-band barrier height is shown to remain constant over the entire temperature range. The Fermi level is demonstrated to be pinned to the conduction band. A new quantity, the flat-band saturation current (Isf) is defined. Plots of n ln(Isf/T2) vs 1/T are found to give an excellent fit to the data over 28 orders of magnitude. From these plots the flat-band barrier height and the modified Richardson constant are obtained directly. This technique provides a completely self-consistent and more reliable way of obtaining these parameters than do previous methods. For low temperatures and low forward bias, recombination via tunneling through surface states becomes the dominant conduction mechanism.</description><subject>Applied sciences</subject><subject>Diodes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo90D1PwzAUhWELgUQpSPyEDAixpNwbx7E9ooovqRIDMEeO7aiGJC6-ydB_T1EqprM8OsPL2DXCCqHi97jiolBan7AFgtK5FAJO2QKgwFxpqc_ZBdEXAKLiesHUOg5usmOIQ9Z7uzVDoJ6yMGQ-NWHqMwpdsMH57N1u4zh-7zMXovN0yc5a05G_Ou6SfT49fqxf8s3b8-v6YZNbLnDMEYuqrXijdVEK65xTjntftWiKypoGUQK0pRCVQN24UkupfesEoJUSNAi-ZLfz7y7Fn8nTWPeBrO86M_g4UV0ILUupqgO8m6FNkSj5tt6l0Ju0rxHqvzQ11nOaA705fhqypmuTGWygf19KoWQB_BeTt2Fb</recordid><startdate>19930415</startdate><enddate>19930415</enddate><creator>UNEWISSE, M. H</creator><creator>STOREY, J. W. V</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19930415</creationdate><title>Conduction mechanisms in erbium silicide Schottky diodes</title><author>UNEWISSE, M. H ; STOREY, J. W. V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-1126f63b99245cddd8d3ee6f1a26cab11700f4556519bd49779efd501c7709053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Diodes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>UNEWISSE, M. H</creatorcontrib><creatorcontrib>STOREY, J. W. V</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>UNEWISSE, M. H</au><au>STOREY, J. W. V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conduction mechanisms in erbium silicide Schottky diodes</atitle><jtitle>Journal of applied physics</jtitle><date>1993-04-15</date><risdate>1993</risdate><volume>73</volume><issue>8</issue><spage>3873</spage><epage>3879</epage><pages>3873-3879</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Conduction mechanisms in erbium silicide Schottky diodes on n-type silicon have been studied over a temperature range of 25 to 160 K. Thermionic emission is the dominant carrier transport mechanism above 70 K. Below this temperature, deviations are apparent in the zero-bias barrier height and ideality factor. However, the flat-band barrier height is shown to remain constant over the entire temperature range. The Fermi level is demonstrated to be pinned to the conduction band. A new quantity, the flat-band saturation current (Isf) is defined. Plots of n ln(Isf/T2) vs 1/T are found to give an excellent fit to the data over 28 orders of magnitude. From these plots the flat-band barrier height and the modified Richardson constant are obtained directly. This technique provides a completely self-consistent and more reliable way of obtaining these parameters than do previous methods. For low temperatures and low forward bias, recombination via tunneling through surface states becomes the dominant conduction mechanism.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.352899</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 1993-04, Vol.73 (8), p.3873-3879 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_miscellaneous_25974786 |
source | AIP Digital Archive |
subjects | Applied sciences Diodes Electronics Exact sciences and technology Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices |
title | Conduction mechanisms in erbium silicide Schottky diodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conduction%20mechanisms%20in%20erbium%20silicide%20Schottky%20diodes&rft.jtitle=Journal%20of%20applied%20physics&rft.au=UNEWISSE,%20M.%20H&rft.date=1993-04-15&rft.volume=73&rft.issue=8&rft.spage=3873&rft.epage=3879&rft.pages=3873-3879&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.352899&rft_dat=%3Cproquest_cross%3E25974786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25974786&rft_id=info:pmid/&rfr_iscdi=true |