Conduction mechanisms in erbium silicide Schottky diodes

Conduction mechanisms in erbium silicide Schottky diodes on n-type silicon have been studied over a temperature range of 25 to 160 K. Thermionic emission is the dominant carrier transport mechanism above 70 K. Below this temperature, deviations are apparent in the zero-bias barrier height and ideali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1993-04, Vol.73 (8), p.3873-3879
Hauptverfasser: UNEWISSE, M. H, STOREY, J. W. V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3879
container_issue 8
container_start_page 3873
container_title Journal of applied physics
container_volume 73
creator UNEWISSE, M. H
STOREY, J. W. V
description Conduction mechanisms in erbium silicide Schottky diodes on n-type silicon have been studied over a temperature range of 25 to 160 K. Thermionic emission is the dominant carrier transport mechanism above 70 K. Below this temperature, deviations are apparent in the zero-bias barrier height and ideality factor. However, the flat-band barrier height is shown to remain constant over the entire temperature range. The Fermi level is demonstrated to be pinned to the conduction band. A new quantity, the flat-band saturation current (Isf) is defined. Plots of n ln(Isf/T2) vs 1/T are found to give an excellent fit to the data over 28 orders of magnitude. From these plots the flat-band barrier height and the modified Richardson constant are obtained directly. This technique provides a completely self-consistent and more reliable way of obtaining these parameters than do previous methods. For low temperatures and low forward bias, recombination via tunneling through surface states becomes the dominant conduction mechanism.
doi_str_mv 10.1063/1.352899
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25974786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25974786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-1126f63b99245cddd8d3ee6f1a26cab11700f4556519bd49779efd501c7709053</originalsourceid><addsrcrecordid>eNo90D1PwzAUhWELgUQpSPyEDAixpNwbx7E9ooovqRIDMEeO7aiGJC6-ydB_T1EqprM8OsPL2DXCCqHi97jiolBan7AFgtK5FAJO2QKgwFxpqc_ZBdEXAKLiesHUOg5usmOIQ9Z7uzVDoJ6yMGQ-NWHqMwpdsMH57N1u4zh-7zMXovN0yc5a05G_Ou6SfT49fqxf8s3b8-v6YZNbLnDMEYuqrXijdVEK65xTjntftWiKypoGUQK0pRCVQN24UkupfesEoJUSNAi-ZLfz7y7Fn8nTWPeBrO86M_g4UV0ILUupqgO8m6FNkSj5tt6l0Ju0rxHqvzQ11nOaA705fhqypmuTGWygf19KoWQB_BeTt2Fb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25974786</pqid></control><display><type>article</type><title>Conduction mechanisms in erbium silicide Schottky diodes</title><source>AIP Digital Archive</source><creator>UNEWISSE, M. H ; STOREY, J. W. V</creator><creatorcontrib>UNEWISSE, M. H ; STOREY, J. W. V</creatorcontrib><description>Conduction mechanisms in erbium silicide Schottky diodes on n-type silicon have been studied over a temperature range of 25 to 160 K. Thermionic emission is the dominant carrier transport mechanism above 70 K. Below this temperature, deviations are apparent in the zero-bias barrier height and ideality factor. However, the flat-band barrier height is shown to remain constant over the entire temperature range. The Fermi level is demonstrated to be pinned to the conduction band. A new quantity, the flat-band saturation current (Isf) is defined. Plots of n ln(Isf/T2) vs 1/T are found to give an excellent fit to the data over 28 orders of magnitude. From these plots the flat-band barrier height and the modified Richardson constant are obtained directly. This technique provides a completely self-consistent and more reliable way of obtaining these parameters than do previous methods. For low temperatures and low forward bias, recombination via tunneling through surface states becomes the dominant conduction mechanism.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.352899</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Applied sciences ; Diodes ; Electronics ; Exact sciences and technology ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Journal of applied physics, 1993-04, Vol.73 (8), p.3873-3879</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-1126f63b99245cddd8d3ee6f1a26cab11700f4556519bd49779efd501c7709053</citedby><cites>FETCH-LOGICAL-c351t-1126f63b99245cddd8d3ee6f1a26cab11700f4556519bd49779efd501c7709053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4758720$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>UNEWISSE, M. H</creatorcontrib><creatorcontrib>STOREY, J. W. V</creatorcontrib><title>Conduction mechanisms in erbium silicide Schottky diodes</title><title>Journal of applied physics</title><description>Conduction mechanisms in erbium silicide Schottky diodes on n-type silicon have been studied over a temperature range of 25 to 160 K. Thermionic emission is the dominant carrier transport mechanism above 70 K. Below this temperature, deviations are apparent in the zero-bias barrier height and ideality factor. However, the flat-band barrier height is shown to remain constant over the entire temperature range. The Fermi level is demonstrated to be pinned to the conduction band. A new quantity, the flat-band saturation current (Isf) is defined. Plots of n ln(Isf/T2) vs 1/T are found to give an excellent fit to the data over 28 orders of magnitude. From these plots the flat-band barrier height and the modified Richardson constant are obtained directly. This technique provides a completely self-consistent and more reliable way of obtaining these parameters than do previous methods. For low temperatures and low forward bias, recombination via tunneling through surface states becomes the dominant conduction mechanism.</description><subject>Applied sciences</subject><subject>Diodes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo90D1PwzAUhWELgUQpSPyEDAixpNwbx7E9ooovqRIDMEeO7aiGJC6-ydB_T1EqprM8OsPL2DXCCqHi97jiolBan7AFgtK5FAJO2QKgwFxpqc_ZBdEXAKLiesHUOg5usmOIQ9Z7uzVDoJ6yMGQ-NWHqMwpdsMH57N1u4zh-7zMXovN0yc5a05G_Ou6SfT49fqxf8s3b8-v6YZNbLnDMEYuqrXijdVEK65xTjntftWiKypoGUQK0pRCVQN24UkupfesEoJUSNAi-ZLfz7y7Fn8nTWPeBrO86M_g4UV0ILUupqgO8m6FNkSj5tt6l0Ju0rxHqvzQ11nOaA705fhqypmuTGWygf19KoWQB_BeTt2Fb</recordid><startdate>19930415</startdate><enddate>19930415</enddate><creator>UNEWISSE, M. H</creator><creator>STOREY, J. W. V</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19930415</creationdate><title>Conduction mechanisms in erbium silicide Schottky diodes</title><author>UNEWISSE, M. H ; STOREY, J. W. V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-1126f63b99245cddd8d3ee6f1a26cab11700f4556519bd49779efd501c7709053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Diodes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>UNEWISSE, M. H</creatorcontrib><creatorcontrib>STOREY, J. W. V</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>UNEWISSE, M. H</au><au>STOREY, J. W. V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conduction mechanisms in erbium silicide Schottky diodes</atitle><jtitle>Journal of applied physics</jtitle><date>1993-04-15</date><risdate>1993</risdate><volume>73</volume><issue>8</issue><spage>3873</spage><epage>3879</epage><pages>3873-3879</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Conduction mechanisms in erbium silicide Schottky diodes on n-type silicon have been studied over a temperature range of 25 to 160 K. Thermionic emission is the dominant carrier transport mechanism above 70 K. Below this temperature, deviations are apparent in the zero-bias barrier height and ideality factor. However, the flat-band barrier height is shown to remain constant over the entire temperature range. The Fermi level is demonstrated to be pinned to the conduction band. A new quantity, the flat-band saturation current (Isf) is defined. Plots of n ln(Isf/T2) vs 1/T are found to give an excellent fit to the data over 28 orders of magnitude. From these plots the flat-band barrier height and the modified Richardson constant are obtained directly. This technique provides a completely self-consistent and more reliable way of obtaining these parameters than do previous methods. For low temperatures and low forward bias, recombination via tunneling through surface states becomes the dominant conduction mechanism.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.352899</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1993-04, Vol.73 (8), p.3873-3879
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_miscellaneous_25974786
source AIP Digital Archive
subjects Applied sciences
Diodes
Electronics
Exact sciences and technology
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Conduction mechanisms in erbium silicide Schottky diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conduction%20mechanisms%20in%20erbium%20silicide%20Schottky%20diodes&rft.jtitle=Journal%20of%20applied%20physics&rft.au=UNEWISSE,%20M.%20H&rft.date=1993-04-15&rft.volume=73&rft.issue=8&rft.spage=3873&rft.epage=3879&rft.pages=3873-3879&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.352899&rft_dat=%3Cproquest_cross%3E25974786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25974786&rft_id=info:pmid/&rfr_iscdi=true