Achieving service rate objectives with decay usage scheduling

Decay usage scheduling is a priority- and usage-based approach to CPU allocation in which preference is given to processes that have consumed little CPU in the recent past. The author develops an analytic model for decay usage schedulers running compute-bound workloads, such as those found in many e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering 1993-08, Vol.19 (8), p.813-825
1. Verfasser: Hellerstein, J.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 8
container_start_page 813
container_title IEEE transactions on software engineering
container_volume 19
creator Hellerstein, J.L.
description Decay usage scheduling is a priority- and usage-based approach to CPU allocation in which preference is given to processes that have consumed little CPU in the recent past. The author develops an analytic model for decay usage schedulers running compute-bound workloads, such as those found in many engineering and scientific environments; the model is validated from measurements of a Unix system. This model is used in two ways. First, ways to parameterize decay usage schedulers are studied to achieve a wide range of service rates. Doing so requires a fine granularity of control and a large range of control. The results show that, for a fixed representation of process priorities a larger range of control makes the granularity of control coarser, and a finer granularity of control decreases the range of control. A second use of the analytic model is to construct a low overhead algorithms for achieving service rate objectives. Existing approaches require adding a feedback loop to the scheduler. This overhead is avoided by exploiting the feedback already present in decay usage schedulers. Using both empirical and analytical techniques, it is shown that the algorithm is effective and that it provides fairness when the system is over- or under-loaded.< >
doi_str_mv 10.1109/32.238584
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_25968088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>238584</ieee_id><sourcerecordid>1143188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d91f061dae1ea3816f6385e0c59fddc1dacb6d16cfbb1841050941dcef3b417e3</originalsourceid><addsrcrecordid>eNpdkL1PwzAUxC0EEqUwsDJFCCExpPjFcWIPDFXFl1SJBWbLsZ9bV2lS7KSo_z2pWjEwveF-d-90hFwDnQBQ-ciyScYEF_kJGYFkMmU8o6dkRKkUKedCnpOLGFeUUl6WfESepmbpceubRRIxbL3BJOgOk7Zaoen8FmPy47tlYtHoXdJHvcAkmiXavh48l-TM6Tri1fGOydfL8-fsLZ1_vL7PpvPUMMa61EpwtACrEVAzAYUrho5IDZfOWjMIpiosFMZVFYgcKKcyB2vQsSqHEtmY3B9yN6H97jF2au2jwbrWDbZ9VBmXhaBCDODtP3DV9qEZuimQnJdCluUAPRwgE9oYAzq1CX6tw04BVfsVFcvUYcWBvTsG6mh07YJujI9_hpyCgGz_9-aAeUT8U48Zv_kleQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195578977</pqid></control><display><type>article</type><title>Achieving service rate objectives with decay usage scheduling</title><source>IEEE Electronic Library (IEL)</source><creator>Hellerstein, J.L.</creator><creatorcontrib>Hellerstein, J.L.</creatorcontrib><description>Decay usage scheduling is a priority- and usage-based approach to CPU allocation in which preference is given to processes that have consumed little CPU in the recent past. The author develops an analytic model for decay usage schedulers running compute-bound workloads, such as those found in many engineering and scientific environments; the model is validated from measurements of a Unix system. This model is used in two ways. First, ways to parameterize decay usage schedulers are studied to achieve a wide range of service rates. Doing so requires a fine granularity of control and a large range of control. The results show that, for a fixed representation of process priorities a larger range of control makes the granularity of control coarser, and a finer granularity of control decreases the range of control. A second use of the analytic model is to construct a low overhead algorithms for achieving service rate objectives. Existing approaches require adding a feedback loop to the scheduler. This overhead is avoided by exploiting the feedback already present in decay usage schedulers. Using both empirical and analytical techniques, it is shown that the algorithm is effective and that it provides fairness when the system is over- or under-loaded.&lt; &gt;</description><identifier>ISSN: 0098-5589</identifier><identifier>EISSN: 1939-3520</identifier><identifier>DOI: 10.1109/32.238584</identifier><identifier>CODEN: IESEDJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Central Processing Unit ; Computer science; control theory; systems ; Control systems ; Data base management systems ; Delay ; Exact sciences and technology ; Feedback loop ; Information management ; Miscellaneous ; Objectives ; Operating systems ; Processor scheduling ; Scheduling ; Scheduling algorithm ; Software ; Software engineering ; Studies ; Tellurium ; Throughput ; UNIX ; Workloads</subject><ispartof>IEEE transactions on software engineering, 1993-08, Vol.19 (8), p.813-825</ispartof><rights>1994 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d91f061dae1ea3816f6385e0c59fddc1dacb6d16cfbb1841050941dcef3b417e3</citedby><cites>FETCH-LOGICAL-c333t-d91f061dae1ea3816f6385e0c59fddc1dacb6d16cfbb1841050941dcef3b417e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/238584$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/238584$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4018128$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hellerstein, J.L.</creatorcontrib><title>Achieving service rate objectives with decay usage scheduling</title><title>IEEE transactions on software engineering</title><addtitle>TSE</addtitle><description>Decay usage scheduling is a priority- and usage-based approach to CPU allocation in which preference is given to processes that have consumed little CPU in the recent past. The author develops an analytic model for decay usage schedulers running compute-bound workloads, such as those found in many engineering and scientific environments; the model is validated from measurements of a Unix system. This model is used in two ways. First, ways to parameterize decay usage schedulers are studied to achieve a wide range of service rates. Doing so requires a fine granularity of control and a large range of control. The results show that, for a fixed representation of process priorities a larger range of control makes the granularity of control coarser, and a finer granularity of control decreases the range of control. A second use of the analytic model is to construct a low overhead algorithms for achieving service rate objectives. Existing approaches require adding a feedback loop to the scheduler. This overhead is avoided by exploiting the feedback already present in decay usage schedulers. Using both empirical and analytical techniques, it is shown that the algorithm is effective and that it provides fairness when the system is over- or under-loaded.&lt; &gt;</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Central Processing Unit</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Data base management systems</subject><subject>Delay</subject><subject>Exact sciences and technology</subject><subject>Feedback loop</subject><subject>Information management</subject><subject>Miscellaneous</subject><subject>Objectives</subject><subject>Operating systems</subject><subject>Processor scheduling</subject><subject>Scheduling</subject><subject>Scheduling algorithm</subject><subject>Software</subject><subject>Software engineering</subject><subject>Studies</subject><subject>Tellurium</subject><subject>Throughput</subject><subject>UNIX</subject><subject>Workloads</subject><issn>0098-5589</issn><issn>1939-3520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkL1PwzAUxC0EEqUwsDJFCCExpPjFcWIPDFXFl1SJBWbLsZ9bV2lS7KSo_z2pWjEwveF-d-90hFwDnQBQ-ciyScYEF_kJGYFkMmU8o6dkRKkUKedCnpOLGFeUUl6WfESepmbpceubRRIxbL3BJOgOk7Zaoen8FmPy47tlYtHoXdJHvcAkmiXavh48l-TM6Tri1fGOydfL8-fsLZ1_vL7PpvPUMMa61EpwtACrEVAzAYUrho5IDZfOWjMIpiosFMZVFYgcKKcyB2vQsSqHEtmY3B9yN6H97jF2au2jwbrWDbZ9VBmXhaBCDODtP3DV9qEZuimQnJdCluUAPRwgE9oYAzq1CX6tw04BVfsVFcvUYcWBvTsG6mh07YJujI9_hpyCgGz_9-aAeUT8U48Zv_kleQA</recordid><startdate>19930801</startdate><enddate>19930801</enddate><creator>Hellerstein, J.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930801</creationdate><title>Achieving service rate objectives with decay usage scheduling</title><author>Hellerstein, J.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d91f061dae1ea3816f6385e0c59fddc1dacb6d16cfbb1841050941dcef3b417e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Central Processing Unit</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Data base management systems</topic><topic>Delay</topic><topic>Exact sciences and technology</topic><topic>Feedback loop</topic><topic>Information management</topic><topic>Miscellaneous</topic><topic>Objectives</topic><topic>Operating systems</topic><topic>Processor scheduling</topic><topic>Scheduling</topic><topic>Scheduling algorithm</topic><topic>Software</topic><topic>Software engineering</topic><topic>Studies</topic><topic>Tellurium</topic><topic>Throughput</topic><topic>UNIX</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hellerstein, J.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hellerstein, J.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving service rate objectives with decay usage scheduling</atitle><jtitle>IEEE transactions on software engineering</jtitle><stitle>TSE</stitle><date>1993-08-01</date><risdate>1993</risdate><volume>19</volume><issue>8</issue><spage>813</spage><epage>825</epage><pages>813-825</pages><issn>0098-5589</issn><eissn>1939-3520</eissn><coden>IESEDJ</coden><abstract>Decay usage scheduling is a priority- and usage-based approach to CPU allocation in which preference is given to processes that have consumed little CPU in the recent past. The author develops an analytic model for decay usage schedulers running compute-bound workloads, such as those found in many engineering and scientific environments; the model is validated from measurements of a Unix system. This model is used in two ways. First, ways to parameterize decay usage schedulers are studied to achieve a wide range of service rates. Doing so requires a fine granularity of control and a large range of control. The results show that, for a fixed representation of process priorities a larger range of control makes the granularity of control coarser, and a finer granularity of control decreases the range of control. A second use of the analytic model is to construct a low overhead algorithms for achieving service rate objectives. Existing approaches require adding a feedback loop to the scheduler. This overhead is avoided by exploiting the feedback already present in decay usage schedulers. Using both empirical and analytical techniques, it is shown that the algorithm is effective and that it provides fairness when the system is over- or under-loaded.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/32.238584</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-5589
ispartof IEEE transactions on software engineering, 1993-08, Vol.19 (8), p.813-825
issn 0098-5589
1939-3520
language eng
recordid cdi_proquest_miscellaneous_25968088
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Applied sciences
Central Processing Unit
Computer science
control theory
systems
Control systems
Data base management systems
Delay
Exact sciences and technology
Feedback loop
Information management
Miscellaneous
Objectives
Operating systems
Processor scheduling
Scheduling
Scheduling algorithm
Software
Software engineering
Studies
Tellurium
Throughput
UNIX
Workloads
title Achieving service rate objectives with decay usage scheduling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20service%20rate%20objectives%20with%20decay%20usage%20scheduling&rft.jtitle=IEEE%20transactions%20on%20software%20engineering&rft.au=Hellerstein,%20J.L.&rft.date=1993-08-01&rft.volume=19&rft.issue=8&rft.spage=813&rft.epage=825&rft.pages=813-825&rft.issn=0098-5589&rft.eissn=1939-3520&rft.coden=IESEDJ&rft_id=info:doi/10.1109/32.238584&rft_dat=%3Cproquest_RIE%3E1143188%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195578977&rft_id=info:pmid/&rft_ieee_id=238584&rfr_iscdi=true