A remote sensing based vegetation classification logic for global land cover analysis

This article proposes a simple new logic for classifying global vegetation. The critical features of this classification are that 1) it is based on simple, observable, unambiguous characteristics of vegetation structure that are important to ecosystem biogeochemistry and can be measured in the field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote Sensing of Environment 1995, Vol.51 (1), p.39-48
Hauptverfasser: Running, Steven W., Loveland, Thomas R., Pierce, Lars L., Nemani, R.R., Hunt, E.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 39
container_title Remote Sensing of Environment
container_volume 51
creator Running, Steven W.
Loveland, Thomas R.
Pierce, Lars L.
Nemani, R.R.
Hunt, E.R.
description This article proposes a simple new logic for classifying global vegetation. The critical features of this classification are that 1) it is based on simple, observable, unambiguous characteristics of vegetation structure that are important to ecosystem biogeochemistry and can be measured in the field for validation, 2) the structural characteristics are remotely sensible so that repeatable and efficient global reclassifications of existing vegetation will be possible, and 3) the defined vegetation classes directly translate into the biophysical parameters of interest by global climate and biogeochemical models. A first test of this logic for the continental United States is presented based on an existing 1 km AVHRR normalized difference vegetation index database. Procedures for solving critical remote sensing problems needed to implement the classification are discussed. Also, some inferences from this classification to advanced vegetation biophysical variables such as specific leaf area and photosynthetic capacity useful to global biogeochemical modeling are suggested.
doi_str_mv 10.1016/0034-4257(94)00063-S
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_25967705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>003442579400063S</els_id><sourcerecordid>25967705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-eec8393fb4943d18ccfbe9362696836b0bcfedefbe38bf5c5fbabb981e4ae5823</originalsourceid><addsrcrecordid>eNqFkU2P1DAMhisEEsPCH0AcckAIDoVk8tHkgrRa8SWtxGGYc5S4TgnqNEvcHWn_PS1d7RFOlu3H1uvXTfNK8PeCC_OBc6latdfdW6fecc6NbA-Pmp2wnWt5x9XjZveAPG2eEf3iXGjbiV1zvGQVT2VGRjhRngYWA2HPzjjgHOZcJgZjIMopw5aOZcjAUqlsGEsMIxvD1DMoZ6wsTGG8o0zPmycpjIQv7uNFc_z86cfV1_b6-5dvV5fXLSjH5xYRrHQyReWU7IUFSBGdNHvjjJUm8ggJe1yK0sakQacYYnRWoAqo7V5eNGzbW2jOniDPCD-hTBPC7KWwUi3Imw25qeX3LdLsT5kAx0U1llvye-1M13H9X1CYTihp-AKqDYRaiComf1PzKdQ7L7hf_-FXs_1qtnfK__2HPyxjr-_3B4IwphomyPQwK5XhVq96X25YCsWHoS7I8eC01J3qlubHrYmLqeeMdb0ZJ8A-1_XkvuR_i_gDV5eoDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16714360</pqid></control><display><type>article</type><title>A remote sensing based vegetation classification logic for global land cover analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Running, Steven W. ; Loveland, Thomas R. ; Pierce, Lars L. ; Nemani, R.R. ; Hunt, E.R.</creator><creatorcontrib>Running, Steven W. ; Loveland, Thomas R. ; Pierce, Lars L. ; Nemani, R.R. ; Hunt, E.R.</creatorcontrib><description>This article proposes a simple new logic for classifying global vegetation. The critical features of this classification are that 1) it is based on simple, observable, unambiguous characteristics of vegetation structure that are important to ecosystem biogeochemistry and can be measured in the field for validation, 2) the structural characteristics are remotely sensible so that repeatable and efficient global reclassifications of existing vegetation will be possible, and 3) the defined vegetation classes directly translate into the biophysical parameters of interest by global climate and biogeochemical models. A first test of this logic for the continental United States is presented based on an existing 1 km AVHRR normalized difference vegetation index database. Procedures for solving critical remote sensing problems needed to implement the classification are discussed. Also, some inferences from this classification to advanced vegetation biophysical variables such as specific leaf area and photosynthetic capacity useful to global biogeochemical modeling are suggested.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/0034-4257(94)00063-S</identifier><identifier>CODEN: RSEEA7</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Animal, plant and microbial ecology ; Biological and medical sciences ; CLASIFICACION ; CLASSIFICATION ; CLIMATIC CHANGE ; COVER PLANTS ; ENVIRONMENTAL SCIENCES ; ETATS UNIS ; EUA ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; GLOBAL ASPECTS ; GROUND COVER ; MATHEMATICAL MODELS ; PHOTOSYNTHESIS ; PLANTAS DE COBERTURA ; PLANTE DE COUVERTURE ; PLANTS ; REMOTE SENSING ; TELEDETECCION ; TELEDETECTION ; Teledetection and vegetation maps ; TERRESTRIAL ECOSYSTEMS ; USA ; VEGETACION ; VEGETATION ; VEGETATION TYPES</subject><ispartof>Remote Sensing of Environment, 1995, Vol.51 (1), p.39-48</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-eec8393fb4943d18ccfbe9362696836b0bcfedefbe38bf5c5fbabb981e4ae5823</citedby><cites>FETCH-LOGICAL-c490t-eec8393fb4943d18ccfbe9362696836b0bcfedefbe38bf5c5fbabb981e4ae5823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0034-4257(94)00063-S$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,882,3537,4010,4036,4037,23911,23912,25121,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3460854$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/31834$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Running, Steven W.</creatorcontrib><creatorcontrib>Loveland, Thomas R.</creatorcontrib><creatorcontrib>Pierce, Lars L.</creatorcontrib><creatorcontrib>Nemani, R.R.</creatorcontrib><creatorcontrib>Hunt, E.R.</creatorcontrib><title>A remote sensing based vegetation classification logic for global land cover analysis</title><title>Remote Sensing of Environment</title><description>This article proposes a simple new logic for classifying global vegetation. The critical features of this classification are that 1) it is based on simple, observable, unambiguous characteristics of vegetation structure that are important to ecosystem biogeochemistry and can be measured in the field for validation, 2) the structural characteristics are remotely sensible so that repeatable and efficient global reclassifications of existing vegetation will be possible, and 3) the defined vegetation classes directly translate into the biophysical parameters of interest by global climate and biogeochemical models. A first test of this logic for the continental United States is presented based on an existing 1 km AVHRR normalized difference vegetation index database. Procedures for solving critical remote sensing problems needed to implement the classification are discussed. Also, some inferences from this classification to advanced vegetation biophysical variables such as specific leaf area and photosynthetic capacity useful to global biogeochemical modeling are suggested.</description><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>CLASIFICACION</subject><subject>CLASSIFICATION</subject><subject>CLIMATIC CHANGE</subject><subject>COVER PLANTS</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>ETATS UNIS</subject><subject>EUA</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>GLOBAL ASPECTS</subject><subject>GROUND COVER</subject><subject>MATHEMATICAL MODELS</subject><subject>PHOTOSYNTHESIS</subject><subject>PLANTAS DE COBERTURA</subject><subject>PLANTE DE COUVERTURE</subject><subject>PLANTS</subject><subject>REMOTE SENSING</subject><subject>TELEDETECCION</subject><subject>TELEDETECTION</subject><subject>Teledetection and vegetation maps</subject><subject>TERRESTRIAL ECOSYSTEMS</subject><subject>USA</subject><subject>VEGETACION</subject><subject>VEGETATION</subject><subject>VEGETATION TYPES</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqFkU2P1DAMhisEEsPCH0AcckAIDoVk8tHkgrRa8SWtxGGYc5S4TgnqNEvcHWn_PS1d7RFOlu3H1uvXTfNK8PeCC_OBc6latdfdW6fecc6NbA-Pmp2wnWt5x9XjZveAPG2eEf3iXGjbiV1zvGQVT2VGRjhRngYWA2HPzjjgHOZcJgZjIMopw5aOZcjAUqlsGEsMIxvD1DMoZ6wsTGG8o0zPmycpjIQv7uNFc_z86cfV1_b6-5dvV5fXLSjH5xYRrHQyReWU7IUFSBGdNHvjjJUm8ggJe1yK0sakQacYYnRWoAqo7V5eNGzbW2jOniDPCD-hTBPC7KWwUi3Imw25qeX3LdLsT5kAx0U1llvye-1M13H9X1CYTihp-AKqDYRaiComf1PzKdQ7L7hf_-FXs_1qtnfK__2HPyxjr-_3B4IwphomyPQwK5XhVq96X25YCsWHoS7I8eC01J3qlubHrYmLqeeMdb0ZJ8A-1_XkvuR_i_gDV5eoDA</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Running, Steven W.</creator><creator>Loveland, Thomas R.</creator><creator>Pierce, Lars L.</creator><creator>Nemani, R.R.</creator><creator>Hunt, E.R.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>1995</creationdate><title>A remote sensing based vegetation classification logic for global land cover analysis</title><author>Running, Steven W. ; Loveland, Thomas R. ; Pierce, Lars L. ; Nemani, R.R. ; Hunt, E.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-eec8393fb4943d18ccfbe9362696836b0bcfedefbe38bf5c5fbabb981e4ae5823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>CLASIFICACION</topic><topic>CLASSIFICATION</topic><topic>CLIMATIC CHANGE</topic><topic>COVER PLANTS</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>ETATS UNIS</topic><topic>EUA</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>GLOBAL ASPECTS</topic><topic>GROUND COVER</topic><topic>MATHEMATICAL MODELS</topic><topic>PHOTOSYNTHESIS</topic><topic>PLANTAS DE COBERTURA</topic><topic>PLANTE DE COUVERTURE</topic><topic>PLANTS</topic><topic>REMOTE SENSING</topic><topic>TELEDETECCION</topic><topic>TELEDETECTION</topic><topic>Teledetection and vegetation maps</topic><topic>TERRESTRIAL ECOSYSTEMS</topic><topic>USA</topic><topic>VEGETACION</topic><topic>VEGETATION</topic><topic>VEGETATION TYPES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Running, Steven W.</creatorcontrib><creatorcontrib>Loveland, Thomas R.</creatorcontrib><creatorcontrib>Pierce, Lars L.</creatorcontrib><creatorcontrib>Nemani, R.R.</creatorcontrib><creatorcontrib>Hunt, E.R.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Remote Sensing of Environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Running, Steven W.</au><au>Loveland, Thomas R.</au><au>Pierce, Lars L.</au><au>Nemani, R.R.</au><au>Hunt, E.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A remote sensing based vegetation classification logic for global land cover analysis</atitle><jtitle>Remote Sensing of Environment</jtitle><date>1995</date><risdate>1995</risdate><volume>51</volume><issue>1</issue><spage>39</spage><epage>48</epage><pages>39-48</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><coden>RSEEA7</coden><abstract>This article proposes a simple new logic for classifying global vegetation. The critical features of this classification are that 1) it is based on simple, observable, unambiguous characteristics of vegetation structure that are important to ecosystem biogeochemistry and can be measured in the field for validation, 2) the structural characteristics are remotely sensible so that repeatable and efficient global reclassifications of existing vegetation will be possible, and 3) the defined vegetation classes directly translate into the biophysical parameters of interest by global climate and biogeochemical models. A first test of this logic for the continental United States is presented based on an existing 1 km AVHRR normalized difference vegetation index database. Procedures for solving critical remote sensing problems needed to implement the classification are discussed. Also, some inferences from this classification to advanced vegetation biophysical variables such as specific leaf area and photosynthetic capacity useful to global biogeochemical modeling are suggested.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/0034-4257(94)00063-S</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote Sensing of Environment, 1995, Vol.51 (1), p.39-48
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_miscellaneous_25967705
source Elsevier ScienceDirect Journals
subjects Animal, plant and microbial ecology
Biological and medical sciences
CLASIFICACION
CLASSIFICATION
CLIMATIC CHANGE
COVER PLANTS
ENVIRONMENTAL SCIENCES
ETATS UNIS
EUA
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
GLOBAL ASPECTS
GROUND COVER
MATHEMATICAL MODELS
PHOTOSYNTHESIS
PLANTAS DE COBERTURA
PLANTE DE COUVERTURE
PLANTS
REMOTE SENSING
TELEDETECCION
TELEDETECTION
Teledetection and vegetation maps
TERRESTRIAL ECOSYSTEMS
USA
VEGETACION
VEGETATION
VEGETATION TYPES
title A remote sensing based vegetation classification logic for global land cover analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20remote%20sensing%20based%20vegetation%20classification%20logic%20for%20global%20land%20cover%20analysis&rft.jtitle=Remote%20Sensing%20of%20Environment&rft.au=Running,%20Steven%20W.&rft.date=1995&rft.volume=51&rft.issue=1&rft.spage=39&rft.epage=48&rft.pages=39-48&rft.issn=0034-4257&rft.eissn=1879-0704&rft.coden=RSEEA7&rft_id=info:doi/10.1016/0034-4257(94)00063-S&rft_dat=%3Cproquest_osti_%3E25967705%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16714360&rft_id=info:pmid/&rft_els_id=003442579400063S&rfr_iscdi=true