A Combined Kinematic--Isotropic Hardening Theory for Porous Inelasticity of Ductile Metals

A general treatment of multiaxial inelastic deformation for arbitrarily large strain necessitates consideration of effects of material porosity and its evolution, combined kinematic--isotropic hardening, dislocation substructure stress-state effects and textural anisotropy, rate- and temperature-dep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of damage mechanics 1993-04, Vol.2 (2), p.177-198
Hauptverfasser: McDowell, D L, Marin, E, Bertoncelli, C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 2
container_start_page 177
container_title International journal of damage mechanics
container_volume 2
creator McDowell, D L
Marin, E
Bertoncelli, C
description A general treatment of multiaxial inelastic deformation for arbitrarily large strain necessitates consideration of effects of material porosity and its evolution, combined kinematic--isotropic hardening, dislocation substructure stress-state effects and textural anisotropy, rate- and temperature-dependence, void anisotropy, and failure criteria, among other things. The full set of three invariants of the stress (overstress) tensor is essential for a satisfactory first-order description of these effects. A framework is set forth that is sufficiently general to include arbitrary void growth laws and various state variable inelasticity theories. The framework is applied, within the context of rate-independent plasticity, to predict evolution of void growth during tensile loading of pressurized, circumferentially notched specimens using two different void growth models.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_25967436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25967436</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_259674363</originalsourceid><addsrcrecordid>eNqNjL0OgjAURjtoIv68w53cSEDkbzSogRgTByYXUuGiNaUX2zLw9jL4AC7nLOf7ZszxvTBy4yQNF2xpzNvz_GSXJg67HyCj7iEUNnCZ2HEratctDFlNvagh57pBJdQTyheSHqElDTfSNBgoFEpupoGwI1ALx6G2QiJc0XJp1mzeTsLNzyu2PZ_KLHd7TZ8Bja06YWqUkiuc3qpdmEbxPoiCv8MvRHZFIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25967436</pqid></control><display><type>article</type><title>A Combined Kinematic--Isotropic Hardening Theory for Porous Inelasticity of Ductile Metals</title><source>SAGE Complete A-Z List</source><creator>McDowell, D L ; Marin, E ; Bertoncelli, C</creator><creatorcontrib>McDowell, D L ; Marin, E ; Bertoncelli, C</creatorcontrib><description>A general treatment of multiaxial inelastic deformation for arbitrarily large strain necessitates consideration of effects of material porosity and its evolution, combined kinematic--isotropic hardening, dislocation substructure stress-state effects and textural anisotropy, rate- and temperature-dependence, void anisotropy, and failure criteria, among other things. The full set of three invariants of the stress (overstress) tensor is essential for a satisfactory first-order description of these effects. A framework is set forth that is sufficiently general to include arbitrary void growth laws and various state variable inelasticity theories. The framework is applied, within the context of rate-independent plasticity, to predict evolution of void growth during tensile loading of pressurized, circumferentially notched specimens using two different void growth models.</description><identifier>ISSN: 1056-7895</identifier><language>eng</language><ispartof>International journal of damage mechanics, 1993-04, Vol.2 (2), p.177-198</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>McDowell, D L</creatorcontrib><creatorcontrib>Marin, E</creatorcontrib><creatorcontrib>Bertoncelli, C</creatorcontrib><title>A Combined Kinematic--Isotropic Hardening Theory for Porous Inelasticity of Ductile Metals</title><title>International journal of damage mechanics</title><description>A general treatment of multiaxial inelastic deformation for arbitrarily large strain necessitates consideration of effects of material porosity and its evolution, combined kinematic--isotropic hardening, dislocation substructure stress-state effects and textural anisotropy, rate- and temperature-dependence, void anisotropy, and failure criteria, among other things. The full set of three invariants of the stress (overstress) tensor is essential for a satisfactory first-order description of these effects. A framework is set forth that is sufficiently general to include arbitrary void growth laws and various state variable inelasticity theories. The framework is applied, within the context of rate-independent plasticity, to predict evolution of void growth during tensile loading of pressurized, circumferentially notched specimens using two different void growth models.</description><issn>1056-7895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqNjL0OgjAURjtoIv68w53cSEDkbzSogRgTByYXUuGiNaUX2zLw9jL4AC7nLOf7ZszxvTBy4yQNF2xpzNvz_GSXJg67HyCj7iEUNnCZ2HEratctDFlNvagh57pBJdQTyheSHqElDTfSNBgoFEpupoGwI1ALx6G2QiJc0XJp1mzeTsLNzyu2PZ_KLHd7TZ8Bja06YWqUkiuc3qpdmEbxPoiCv8MvRHZFIA</recordid><startdate>19930401</startdate><enddate>19930401</enddate><creator>McDowell, D L</creator><creator>Marin, E</creator><creator>Bertoncelli, C</creator><scope>7SR</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>19930401</creationdate><title>A Combined Kinematic--Isotropic Hardening Theory for Porous Inelasticity of Ductile Metals</title><author>McDowell, D L ; Marin, E ; Bertoncelli, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_259674363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDowell, D L</creatorcontrib><creatorcontrib>Marin, E</creatorcontrib><creatorcontrib>Bertoncelli, C</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of damage mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDowell, D L</au><au>Marin, E</au><au>Bertoncelli, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Combined Kinematic--Isotropic Hardening Theory for Porous Inelasticity of Ductile Metals</atitle><jtitle>International journal of damage mechanics</jtitle><date>1993-04-01</date><risdate>1993</risdate><volume>2</volume><issue>2</issue><spage>177</spage><epage>198</epage><pages>177-198</pages><issn>1056-7895</issn><abstract>A general treatment of multiaxial inelastic deformation for arbitrarily large strain necessitates consideration of effects of material porosity and its evolution, combined kinematic--isotropic hardening, dislocation substructure stress-state effects and textural anisotropy, rate- and temperature-dependence, void anisotropy, and failure criteria, among other things. The full set of three invariants of the stress (overstress) tensor is essential for a satisfactory first-order description of these effects. A framework is set forth that is sufficiently general to include arbitrary void growth laws and various state variable inelasticity theories. The framework is applied, within the context of rate-independent plasticity, to predict evolution of void growth during tensile loading of pressurized, circumferentially notched specimens using two different void growth models.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1056-7895
ispartof International journal of damage mechanics, 1993-04, Vol.2 (2), p.177-198
issn 1056-7895
language eng
recordid cdi_proquest_miscellaneous_25967436
source SAGE Complete A-Z List
title A Combined Kinematic--Isotropic Hardening Theory for Porous Inelasticity of Ductile Metals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Combined%20Kinematic--Isotropic%20Hardening%20Theory%20for%20Porous%20Inelasticity%20of%20Ductile%20Metals&rft.jtitle=International%20journal%20of%20damage%20mechanics&rft.au=McDowell,%20D%20L&rft.date=1993-04-01&rft.volume=2&rft.issue=2&rft.spage=177&rft.epage=198&rft.pages=177-198&rft.issn=1056-7895&rft_id=info:doi/&rft_dat=%3Cproquest%3E25967436%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25967436&rft_id=info:pmid/&rfr_iscdi=true