Effects of Protonation State on Electrocatalytic CO2 Reduction by a Cobalt Aminopyridine Macrocyclic Complex

A critical component in the reduction of CO2 to CO and H2O is the delivery of 2 equiv of protons and electrons to the CO2 molecule. The timing and sequencing of these proton and electron transfer steps are essential factors in directing the activity and selectivity for catalytic CO2 reduction. In pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2021-12, Vol.60 (23), p.17517-17528
Hauptverfasser: Liu, Jeffrey J, Chapovetsky, Alon, Haiges, Ralf, Marinescu, Smaranda C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17528
container_issue 23
container_start_page 17517
container_title Inorganic chemistry
container_volume 60
creator Liu, Jeffrey J
Chapovetsky, Alon
Haiges, Ralf
Marinescu, Smaranda C
description A critical component in the reduction of CO2 to CO and H2O is the delivery of 2 equiv of protons and electrons to the CO2 molecule. The timing and sequencing of these proton and electron transfer steps are essential factors in directing the activity and selectivity for catalytic CO2 reduction. In previous studies, we have reported a series of macrocyclic aminopyridine cobalt complexes capable of reducing CO2 to CO with high faradaic efficiencies. Kinetic investigations reveal a relationship between the observed rate constant (k obs) and the number of pendant amine hydrogen bond donors minus one, suggesting the presence of a deprotonated active catalytic state. Herein, we investigate the feasibility of these proposed deprotonated complexes toward CO2 reduction. Two deprotonated derivatives, Co­(L 4– ) and Co­(L 2– ), of the tetraamino macrocycle Co­(L) were independently synthesized and structurally characterized revealing extensive delocalization of the negative charge upon deprotonation. 1H nuclear magnetic resonance spectroscopy and ultraviolet–visible titration studies confirm that under catalytic conditions, the active form of the catalyst gradually becomes deprotonated, supporting thus the n donor – 1 relationship with k obs. Electrochemical studies of Co­(L 4– ) reveal that this deprotonated analogue is competent for electrocatalysis upon addition of an exogenous weak acid source, such as 2,2,2-trifluoroethanol, resulting in faradaic efficiencies for CO2-to-CO conversion identical to those observed with the fully protonated derivative (>98%).
doi_str_mv 10.1021/acs.inorgchem.1c01977
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2596455146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596455146</sourcerecordid><originalsourceid>FETCH-LOGICAL-a226t-569c7c01b1a50928578a4f03fc260caea970298d08234f711dc15f0274c290ac3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwCUheskkZO3ESL6uoPKSiIh4Su2jq2JDKiUvsSuTvcWnFaq5m7ozuHEKuGcwYcHaLys_a3g2f6kt3M6aAyaI4IRMmOCSCwccpmQBEzfJcnpML7zcAINMsnxC7MEar4Kkz9HlwwfUYWtfT14BB0ygWNo4HpzCgHUOraLXi9EU3O_XnW48UaeXWaAOddzHFdhzapu01fUIV10Zl9zuu21r9c0nODFqvr451St7vFm_VQ7Jc3T9W82WCnOchEblURfxizVCA5KUoSswMpEbxHBRqlAVwWTZQ8jQzBWONYsIALzLFJaBKp-TmcHc7uO-d9qHuWq-0tdhrt_M1FzLPhGBZHq3sYI0Q643bDX0MVjOo92TrffOfbH0km_4CdmBwlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596455146</pqid></control><display><type>article</type><title>Effects of Protonation State on Electrocatalytic CO2 Reduction by a Cobalt Aminopyridine Macrocyclic Complex</title><source>ACS Publications</source><creator>Liu, Jeffrey J ; Chapovetsky, Alon ; Haiges, Ralf ; Marinescu, Smaranda C</creator><creatorcontrib>Liu, Jeffrey J ; Chapovetsky, Alon ; Haiges, Ralf ; Marinescu, Smaranda C</creatorcontrib><description>A critical component in the reduction of CO2 to CO and H2O is the delivery of 2 equiv of protons and electrons to the CO2 molecule. The timing and sequencing of these proton and electron transfer steps are essential factors in directing the activity and selectivity for catalytic CO2 reduction. In previous studies, we have reported a series of macrocyclic aminopyridine cobalt complexes capable of reducing CO2 to CO with high faradaic efficiencies. Kinetic investigations reveal a relationship between the observed rate constant (k obs) and the number of pendant amine hydrogen bond donors minus one, suggesting the presence of a deprotonated active catalytic state. Herein, we investigate the feasibility of these proposed deprotonated complexes toward CO2 reduction. Two deprotonated derivatives, Co­(L 4– ) and Co­(L 2– ), of the tetraamino macrocycle Co­(L) were independently synthesized and structurally characterized revealing extensive delocalization of the negative charge upon deprotonation. 1H nuclear magnetic resonance spectroscopy and ultraviolet–visible titration studies confirm that under catalytic conditions, the active form of the catalyst gradually becomes deprotonated, supporting thus the n donor – 1 relationship with k obs. Electrochemical studies of Co­(L 4– ) reveal that this deprotonated analogue is competent for electrocatalysis upon addition of an exogenous weak acid source, such as 2,2,2-trifluoroethanol, resulting in faradaic efficiencies for CO2-to-CO conversion identical to those observed with the fully protonated derivative (&gt;98%).</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.1c01977</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Inorganic chemistry, 2021-12, Vol.60 (23), p.17517-17528</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4151-3593 ; 0000-0003-2147-6449 ; 0000-0003-2106-8971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.1c01977$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01977$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Liu, Jeffrey J</creatorcontrib><creatorcontrib>Chapovetsky, Alon</creatorcontrib><creatorcontrib>Haiges, Ralf</creatorcontrib><creatorcontrib>Marinescu, Smaranda C</creatorcontrib><title>Effects of Protonation State on Electrocatalytic CO2 Reduction by a Cobalt Aminopyridine Macrocyclic Complex</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>A critical component in the reduction of CO2 to CO and H2O is the delivery of 2 equiv of protons and electrons to the CO2 molecule. The timing and sequencing of these proton and electron transfer steps are essential factors in directing the activity and selectivity for catalytic CO2 reduction. In previous studies, we have reported a series of macrocyclic aminopyridine cobalt complexes capable of reducing CO2 to CO with high faradaic efficiencies. Kinetic investigations reveal a relationship between the observed rate constant (k obs) and the number of pendant amine hydrogen bond donors minus one, suggesting the presence of a deprotonated active catalytic state. Herein, we investigate the feasibility of these proposed deprotonated complexes toward CO2 reduction. Two deprotonated derivatives, Co­(L 4– ) and Co­(L 2– ), of the tetraamino macrocycle Co­(L) were independently synthesized and structurally characterized revealing extensive delocalization of the negative charge upon deprotonation. 1H nuclear magnetic resonance spectroscopy and ultraviolet–visible titration studies confirm that under catalytic conditions, the active form of the catalyst gradually becomes deprotonated, supporting thus the n donor – 1 relationship with k obs. Electrochemical studies of Co­(L 4– ) reveal that this deprotonated analogue is competent for electrocatalysis upon addition of an exogenous weak acid source, such as 2,2,2-trifluoroethanol, resulting in faradaic efficiencies for CO2-to-CO conversion identical to those observed with the fully protonated derivative (&gt;98%).</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwCUheskkZO3ESL6uoPKSiIh4Su2jq2JDKiUvsSuTvcWnFaq5m7ozuHEKuGcwYcHaLys_a3g2f6kt3M6aAyaI4IRMmOCSCwccpmQBEzfJcnpML7zcAINMsnxC7MEar4Kkz9HlwwfUYWtfT14BB0ygWNo4HpzCgHUOraLXi9EU3O_XnW48UaeXWaAOddzHFdhzapu01fUIV10Zl9zuu21r9c0nODFqvr451St7vFm_VQ7Jc3T9W82WCnOchEblURfxizVCA5KUoSswMpEbxHBRqlAVwWTZQ8jQzBWONYsIALzLFJaBKp-TmcHc7uO-d9qHuWq-0tdhrt_M1FzLPhGBZHq3sYI0Q643bDX0MVjOo92TrffOfbH0km_4CdmBwlA</recordid><startdate>20211206</startdate><enddate>20211206</enddate><creator>Liu, Jeffrey J</creator><creator>Chapovetsky, Alon</creator><creator>Haiges, Ralf</creator><creator>Marinescu, Smaranda C</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4151-3593</orcidid><orcidid>https://orcid.org/0000-0003-2147-6449</orcidid><orcidid>https://orcid.org/0000-0003-2106-8971</orcidid></search><sort><creationdate>20211206</creationdate><title>Effects of Protonation State on Electrocatalytic CO2 Reduction by a Cobalt Aminopyridine Macrocyclic Complex</title><author>Liu, Jeffrey J ; Chapovetsky, Alon ; Haiges, Ralf ; Marinescu, Smaranda C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a226t-569c7c01b1a50928578a4f03fc260caea970298d08234f711dc15f0274c290ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jeffrey J</creatorcontrib><creatorcontrib>Chapovetsky, Alon</creatorcontrib><creatorcontrib>Haiges, Ralf</creatorcontrib><creatorcontrib>Marinescu, Smaranda C</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jeffrey J</au><au>Chapovetsky, Alon</au><au>Haiges, Ralf</au><au>Marinescu, Smaranda C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Protonation State on Electrocatalytic CO2 Reduction by a Cobalt Aminopyridine Macrocyclic Complex</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2021-12-06</date><risdate>2021</risdate><volume>60</volume><issue>23</issue><spage>17517</spage><epage>17528</epage><pages>17517-17528</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>A critical component in the reduction of CO2 to CO and H2O is the delivery of 2 equiv of protons and electrons to the CO2 molecule. The timing and sequencing of these proton and electron transfer steps are essential factors in directing the activity and selectivity for catalytic CO2 reduction. In previous studies, we have reported a series of macrocyclic aminopyridine cobalt complexes capable of reducing CO2 to CO with high faradaic efficiencies. Kinetic investigations reveal a relationship between the observed rate constant (k obs) and the number of pendant amine hydrogen bond donors minus one, suggesting the presence of a deprotonated active catalytic state. Herein, we investigate the feasibility of these proposed deprotonated complexes toward CO2 reduction. Two deprotonated derivatives, Co­(L 4– ) and Co­(L 2– ), of the tetraamino macrocycle Co­(L) were independently synthesized and structurally characterized revealing extensive delocalization of the negative charge upon deprotonation. 1H nuclear magnetic resonance spectroscopy and ultraviolet–visible titration studies confirm that under catalytic conditions, the active form of the catalyst gradually becomes deprotonated, supporting thus the n donor – 1 relationship with k obs. Electrochemical studies of Co­(L 4– ) reveal that this deprotonated analogue is competent for electrocatalysis upon addition of an exogenous weak acid source, such as 2,2,2-trifluoroethanol, resulting in faradaic efficiencies for CO2-to-CO conversion identical to those observed with the fully protonated derivative (&gt;98%).</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.inorgchem.1c01977</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4151-3593</orcidid><orcidid>https://orcid.org/0000-0003-2147-6449</orcidid><orcidid>https://orcid.org/0000-0003-2106-8971</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2021-12, Vol.60 (23), p.17517-17528
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_2596455146
source ACS Publications
title Effects of Protonation State on Electrocatalytic CO2 Reduction by a Cobalt Aminopyridine Macrocyclic Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Protonation%20State%20on%20Electrocatalytic%20CO2%20Reduction%20by%20a%20Cobalt%20Aminopyridine%20Macrocyclic%20Complex&rft.jtitle=Inorganic%20chemistry&rft.au=Liu,%20Jeffrey%20J&rft.date=2021-12-06&rft.volume=60&rft.issue=23&rft.spage=17517&rft.epage=17528&rft.pages=17517-17528&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.1c01977&rft_dat=%3Cproquest_acs_j%3E2596455146%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596455146&rft_id=info:pmid/&rfr_iscdi=true