An inexpensive density functional theory-based protocol to predict accurate 19 F-NMR chemical shifts

Thanks to its advantages, F-NMR is an increasingly popular technique for the structural characterization of F-containing molecules, among which polymers, materials, fluorophores, pharmaceuticals, and so forth. However, the computational calculation of the F-NMR chemical shifts, both for prediction a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2022-01, Vol.43 (3), p.170-183
1. Verfasser: Benassi, Enrico
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 3
container_start_page 170
container_title Journal of computational chemistry
container_volume 43
creator Benassi, Enrico
description Thanks to its advantages, F-NMR is an increasingly popular technique for the structural characterization of F-containing molecules, among which polymers, materials, fluorophores, pharmaceuticals, and so forth. However, the computational calculation of the F-NMR chemical shifts, both for prediction and interpretation of experimental spectra, remains a challenge. In this work a density functional theory (DFT) based protocol for the calculation of the chemical shifts is established within the framework of the gauge-independent atomic orbital method, upon verifying the performance of Hartree-Fock and 60 DFT functionals coupled with seven different basis sets. The benchmark is conducted using two sets of molecules, namely one used for testing methods and another used for probing; the former set consists of 134 molecules, the latter 50, yet both of them with F in different chemical environments. Following Bally-Rablen-Tantillo strategy, the scaling parameters and other statistical quantities were computed for each method upon least squares linear regression between experimental and computed chemical shifts. The designed computational workflow is computationally inexpensive and represents a significant improvement with respect to the current state of the art.
doi_str_mv 10.1002/jcc.26780
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2596022395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596022395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1303-b16fa47fdd6c706285efdec5ca1bf07d2186d2e6664e8960c67960daf88e6afd3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK0e_AOyRz2k7keymxxLsSpUBVHwFjazszQlHzWbiP33bm31Mu8wPDMMDyGXnE05Y-J2DTAVSqfsiIw5y1SUpfrjmIwZz0SUqoSPyJn3a8aYTFR8SkYy1olWQo6JnTW0bPB7g40vv5DaXfZb6oYG-rJtTEX7FbbdNiqMR0s3Xdu30IZpG3q0JfTUAAyd6ZHyjC6i56dXCiusSwi7flW63p-TE2cqjxeHnJD3xd3b_CFavtw_zmfLCLhkMiq4cibWzloFmimRJugsQgKGF45pK3iqrEClVIxpphgoHao1Lk1RGWflhFzv74YvPwf0fV6XHrCqTIPt4HORBF4ImSUBvdmj0LXed-jyTVfWptvmnOU7qXmQmv9KDezV4exQ1Gj_yT-L8geDK3Mk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596022395</pqid></control><display><type>article</type><title>An inexpensive density functional theory-based protocol to predict accurate 19 F-NMR chemical shifts</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Benassi, Enrico</creator><creatorcontrib>Benassi, Enrico</creatorcontrib><description>Thanks to its advantages, F-NMR is an increasingly popular technique for the structural characterization of F-containing molecules, among which polymers, materials, fluorophores, pharmaceuticals, and so forth. However, the computational calculation of the F-NMR chemical shifts, both for prediction and interpretation of experimental spectra, remains a challenge. In this work a density functional theory (DFT) based protocol for the calculation of the chemical shifts is established within the framework of the gauge-independent atomic orbital method, upon verifying the performance of Hartree-Fock and 60 DFT functionals coupled with seven different basis sets. The benchmark is conducted using two sets of molecules, namely one used for testing methods and another used for probing; the former set consists of 134 molecules, the latter 50, yet both of them with F in different chemical environments. Following Bally-Rablen-Tantillo strategy, the scaling parameters and other statistical quantities were computed for each method upon least squares linear regression between experimental and computed chemical shifts. The designed computational workflow is computationally inexpensive and represents a significant improvement with respect to the current state of the art.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.26780</identifier><identifier>PMID: 34757623</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of computational chemistry, 2022-01, Vol.43 (3), p.170-183</ispartof><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1303-b16fa47fdd6c706285efdec5ca1bf07d2186d2e6664e8960c67960daf88e6afd3</citedby><cites>FETCH-LOGICAL-c1303-b16fa47fdd6c706285efdec5ca1bf07d2186d2e6664e8960c67960daf88e6afd3</cites><orcidid>0000-0002-4614-1568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34757623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benassi, Enrico</creatorcontrib><title>An inexpensive density functional theory-based protocol to predict accurate 19 F-NMR chemical shifts</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>Thanks to its advantages, F-NMR is an increasingly popular technique for the structural characterization of F-containing molecules, among which polymers, materials, fluorophores, pharmaceuticals, and so forth. However, the computational calculation of the F-NMR chemical shifts, both for prediction and interpretation of experimental spectra, remains a challenge. In this work a density functional theory (DFT) based protocol for the calculation of the chemical shifts is established within the framework of the gauge-independent atomic orbital method, upon verifying the performance of Hartree-Fock and 60 DFT functionals coupled with seven different basis sets. The benchmark is conducted using two sets of molecules, namely one used for testing methods and another used for probing; the former set consists of 134 molecules, the latter 50, yet both of them with F in different chemical environments. Following Bally-Rablen-Tantillo strategy, the scaling parameters and other statistical quantities were computed for each method upon least squares linear regression between experimental and computed chemical shifts. The designed computational workflow is computationally inexpensive and represents a significant improvement with respect to the current state of the art.</description><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRbK0e_AOyRz2k7keymxxLsSpUBVHwFjazszQlHzWbiP33bm31Mu8wPDMMDyGXnE05Y-J2DTAVSqfsiIw5y1SUpfrjmIwZz0SUqoSPyJn3a8aYTFR8SkYy1olWQo6JnTW0bPB7g40vv5DaXfZb6oYG-rJtTEX7FbbdNiqMR0s3Xdu30IZpG3q0JfTUAAyd6ZHyjC6i56dXCiusSwi7flW63p-TE2cqjxeHnJD3xd3b_CFavtw_zmfLCLhkMiq4cibWzloFmimRJugsQgKGF45pK3iqrEClVIxpphgoHao1Lk1RGWflhFzv74YvPwf0fV6XHrCqTIPt4HORBF4ImSUBvdmj0LXed-jyTVfWptvmnOU7qXmQmv9KDezV4exQ1Gj_yT-L8geDK3Mk</recordid><startdate>20220130</startdate><enddate>20220130</enddate><creator>Benassi, Enrico</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4614-1568</orcidid></search><sort><creationdate>20220130</creationdate><title>An inexpensive density functional theory-based protocol to predict accurate 19 F-NMR chemical shifts</title><author>Benassi, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1303-b16fa47fdd6c706285efdec5ca1bf07d2186d2e6664e8960c67960daf88e6afd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benassi, Enrico</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benassi, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An inexpensive density functional theory-based protocol to predict accurate 19 F-NMR chemical shifts</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2022-01-30</date><risdate>2022</risdate><volume>43</volume><issue>3</issue><spage>170</spage><epage>183</epage><pages>170-183</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>Thanks to its advantages, F-NMR is an increasingly popular technique for the structural characterization of F-containing molecules, among which polymers, materials, fluorophores, pharmaceuticals, and so forth. However, the computational calculation of the F-NMR chemical shifts, both for prediction and interpretation of experimental spectra, remains a challenge. In this work a density functional theory (DFT) based protocol for the calculation of the chemical shifts is established within the framework of the gauge-independent atomic orbital method, upon verifying the performance of Hartree-Fock and 60 DFT functionals coupled with seven different basis sets. The benchmark is conducted using two sets of molecules, namely one used for testing methods and another used for probing; the former set consists of 134 molecules, the latter 50, yet both of them with F in different chemical environments. Following Bally-Rablen-Tantillo strategy, the scaling parameters and other statistical quantities were computed for each method upon least squares linear regression between experimental and computed chemical shifts. The designed computational workflow is computationally inexpensive and represents a significant improvement with respect to the current state of the art.</abstract><cop>United States</cop><pmid>34757623</pmid><doi>10.1002/jcc.26780</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4614-1568</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2022-01, Vol.43 (3), p.170-183
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_2596022395
source Wiley Online Library Journals Frontfile Complete
title An inexpensive density functional theory-based protocol to predict accurate 19 F-NMR chemical shifts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20inexpensive%20density%20functional%20theory-based%20protocol%20to%20predict%20accurate%2019%20F-NMR%20chemical%20shifts&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Benassi,%20Enrico&rft.date=2022-01-30&rft.volume=43&rft.issue=3&rft.spage=170&rft.epage=183&rft.pages=170-183&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.26780&rft_dat=%3Cproquest_cross%3E2596022395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596022395&rft_id=info:pmid/34757623&rfr_iscdi=true