Machine Learning Assisted Doppler Features for Enhancing Thyroid Cancer Diagnosis: A Multi‐Cohort Study

BACKGROUNDThis pilot study aims at exploiting machine learning techniques to extract color Doppler ultrasound (CDUS) features and to build an artificial neural network (ANN) model based on these CDUS features for improving the diagnostic performance of thyroid cancer classification. METHODSA total o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ultrasound in medicine 2022-08, Vol.41 (8), p.1961-1974
Hauptverfasser: Zhu, Yi‐Cheng, Du, Hongbo, Jiang, Quan, Zhang, Tao, Huang, Xu‐Juan, Zhang, Yuan, Shi, Xiu‐Rong, Shan, Jun, AlZoubi, Alaa
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1974
container_issue 8
container_start_page 1961
container_title Journal of ultrasound in medicine
container_volume 41
creator Zhu, Yi‐Cheng
Du, Hongbo
Jiang, Quan
Zhang, Tao
Huang, Xu‐Juan
Zhang, Yuan
Shi, Xiu‐Rong
Shan, Jun
AlZoubi, Alaa
description BACKGROUNDThis pilot study aims at exploiting machine learning techniques to extract color Doppler ultrasound (CDUS) features and to build an artificial neural network (ANN) model based on these CDUS features for improving the diagnostic performance of thyroid cancer classification. METHODSA total of 674 patients with 712 thyroid nodules (TNs) (512 from internal dataset and 200 from external dataset) were randomly selected in this retrospective study. We used ANN to build a model (TDUS-Net) for classifying malignant and benign TNs using both the automatically extracted quantitative CDUS features (whole ratio, intranodular ratio, peripheral ratio, and number of vessels) and gray-scale ultrasound (US) features defined by the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS). Then, we compared the diagnostic performance of the model, the performance of another ANN model based on the gray-scale US features alone (TUS-Net), and that of radiologists. RESULTSThe TDUS-Net (0.898, 95% CI: 0.868-0.922) achieved a higher area under the curve (AUC) than that of TUS-Net (0.881, 95% CI: 0.850-0.908) in the internal tests. Compared with radiologists, TDUS-Net (AUC: 0.925, 95% CI: 0.880-0.958) performed better than radiologists (AUC: 0.810, 95% CI: 0.749-0.862) in the external tests. CONCLUSIONSApplying a machine learning model by combining both gray-scale US features and CDUS features can achieve comparable or even higher performance than radiologists in classifying TNs.
doi_str_mv 10.1002/jum.15873
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2595568344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595568344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-49595e4cf00c91c99e4d0b81537b2ecc9acb103e9b85f5c574be26d61ee1a5a13</originalsourceid><addsrcrecordid>eNotkDtPwzAYRS0EEqUw8A88wpDiZxKPVR-AVISQymw5zpfWVRoHOxn673Ep09WVzr3DQeiRkhklhL0cxuOMyrLgV2hCpSSZyim_RhPCijITTBW36C7GQ0IJLcQEfX0Yu3cd4A2Y0Lluh-cxujhAjZe-71sIeA1mGANE3PiAV93edPbMbfen4F2NF6knaunMrvNpeo9uGtNGePjPKfper7aLt2zz-fq-mG8yyxgbMqGkkiBsQ4hV1CoFoiZVSSUvKgbWKmMrSjioqpSNtLIQFbC8zikANdJQPkVPl98--J8R4qCPLlpoW9OBH6Nm6V_mJRcioc8X1AYfY4BG98EdTThpSvRZm07a9J82_gvlPGBt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595568344</pqid></control><display><type>article</type><title>Machine Learning Assisted Doppler Features for Enhancing Thyroid Cancer Diagnosis: A Multi‐Cohort Study</title><source>Access via Wiley Online Library</source><creator>Zhu, Yi‐Cheng ; Du, Hongbo ; Jiang, Quan ; Zhang, Tao ; Huang, Xu‐Juan ; Zhang, Yuan ; Shi, Xiu‐Rong ; Shan, Jun ; AlZoubi, Alaa</creator><creatorcontrib>Zhu, Yi‐Cheng ; Du, Hongbo ; Jiang, Quan ; Zhang, Tao ; Huang, Xu‐Juan ; Zhang, Yuan ; Shi, Xiu‐Rong ; Shan, Jun ; AlZoubi, Alaa</creatorcontrib><description>BACKGROUNDThis pilot study aims at exploiting machine learning techniques to extract color Doppler ultrasound (CDUS) features and to build an artificial neural network (ANN) model based on these CDUS features for improving the diagnostic performance of thyroid cancer classification. METHODSA total of 674 patients with 712 thyroid nodules (TNs) (512 from internal dataset and 200 from external dataset) were randomly selected in this retrospective study. We used ANN to build a model (TDUS-Net) for classifying malignant and benign TNs using both the automatically extracted quantitative CDUS features (whole ratio, intranodular ratio, peripheral ratio, and number of vessels) and gray-scale ultrasound (US) features defined by the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS). Then, we compared the diagnostic performance of the model, the performance of another ANN model based on the gray-scale US features alone (TUS-Net), and that of radiologists. RESULTSThe TDUS-Net (0.898, 95% CI: 0.868-0.922) achieved a higher area under the curve (AUC) than that of TUS-Net (0.881, 95% CI: 0.850-0.908) in the internal tests. Compared with radiologists, TDUS-Net (AUC: 0.925, 95% CI: 0.880-0.958) performed better than radiologists (AUC: 0.810, 95% CI: 0.749-0.862) in the external tests. CONCLUSIONSApplying a machine learning model by combining both gray-scale US features and CDUS features can achieve comparable or even higher performance than radiologists in classifying TNs.</description><identifier>ISSN: 0278-4297</identifier><identifier>EISSN: 1550-9613</identifier><identifier>DOI: 10.1002/jum.15873</identifier><language>eng</language><ispartof>Journal of ultrasound in medicine, 2022-08, Vol.41 (8), p.1961-1974</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c222t-49595e4cf00c91c99e4d0b81537b2ecc9acb103e9b85f5c574be26d61ee1a5a13</cites><orcidid>0000-0001-5154-7231 ; 0000-0003-3037-0398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Yi‐Cheng</creatorcontrib><creatorcontrib>Du, Hongbo</creatorcontrib><creatorcontrib>Jiang, Quan</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Huang, Xu‐Juan</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Shi, Xiu‐Rong</creatorcontrib><creatorcontrib>Shan, Jun</creatorcontrib><creatorcontrib>AlZoubi, Alaa</creatorcontrib><title>Machine Learning Assisted Doppler Features for Enhancing Thyroid Cancer Diagnosis: A Multi‐Cohort Study</title><title>Journal of ultrasound in medicine</title><description>BACKGROUNDThis pilot study aims at exploiting machine learning techniques to extract color Doppler ultrasound (CDUS) features and to build an artificial neural network (ANN) model based on these CDUS features for improving the diagnostic performance of thyroid cancer classification. METHODSA total of 674 patients with 712 thyroid nodules (TNs) (512 from internal dataset and 200 from external dataset) were randomly selected in this retrospective study. We used ANN to build a model (TDUS-Net) for classifying malignant and benign TNs using both the automatically extracted quantitative CDUS features (whole ratio, intranodular ratio, peripheral ratio, and number of vessels) and gray-scale ultrasound (US) features defined by the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS). Then, we compared the diagnostic performance of the model, the performance of another ANN model based on the gray-scale US features alone (TUS-Net), and that of radiologists. RESULTSThe TDUS-Net (0.898, 95% CI: 0.868-0.922) achieved a higher area under the curve (AUC) than that of TUS-Net (0.881, 95% CI: 0.850-0.908) in the internal tests. Compared with radiologists, TDUS-Net (AUC: 0.925, 95% CI: 0.880-0.958) performed better than radiologists (AUC: 0.810, 95% CI: 0.749-0.862) in the external tests. CONCLUSIONSApplying a machine learning model by combining both gray-scale US features and CDUS features can achieve comparable or even higher performance than radiologists in classifying TNs.</description><issn>0278-4297</issn><issn>1550-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAYRS0EEqUw8A88wpDiZxKPVR-AVISQymw5zpfWVRoHOxn673Ep09WVzr3DQeiRkhklhL0cxuOMyrLgV2hCpSSZyim_RhPCijITTBW36C7GQ0IJLcQEfX0Yu3cd4A2Y0Lluh-cxujhAjZe-71sIeA1mGANE3PiAV93edPbMbfen4F2NF6knaunMrvNpeo9uGtNGePjPKfper7aLt2zz-fq-mG8yyxgbMqGkkiBsQ4hV1CoFoiZVSSUvKgbWKmMrSjioqpSNtLIQFbC8zikANdJQPkVPl98--J8R4qCPLlpoW9OBH6Nm6V_mJRcioc8X1AYfY4BG98EdTThpSvRZm07a9J82_gvlPGBt</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Zhu, Yi‐Cheng</creator><creator>Du, Hongbo</creator><creator>Jiang, Quan</creator><creator>Zhang, Tao</creator><creator>Huang, Xu‐Juan</creator><creator>Zhang, Yuan</creator><creator>Shi, Xiu‐Rong</creator><creator>Shan, Jun</creator><creator>AlZoubi, Alaa</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5154-7231</orcidid><orcidid>https://orcid.org/0000-0003-3037-0398</orcidid></search><sort><creationdate>202208</creationdate><title>Machine Learning Assisted Doppler Features for Enhancing Thyroid Cancer Diagnosis</title><author>Zhu, Yi‐Cheng ; Du, Hongbo ; Jiang, Quan ; Zhang, Tao ; Huang, Xu‐Juan ; Zhang, Yuan ; Shi, Xiu‐Rong ; Shan, Jun ; AlZoubi, Alaa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-49595e4cf00c91c99e4d0b81537b2ecc9acb103e9b85f5c574be26d61ee1a5a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yi‐Cheng</creatorcontrib><creatorcontrib>Du, Hongbo</creatorcontrib><creatorcontrib>Jiang, Quan</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Huang, Xu‐Juan</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Shi, Xiu‐Rong</creatorcontrib><creatorcontrib>Shan, Jun</creatorcontrib><creatorcontrib>AlZoubi, Alaa</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of ultrasound in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yi‐Cheng</au><au>Du, Hongbo</au><au>Jiang, Quan</au><au>Zhang, Tao</au><au>Huang, Xu‐Juan</au><au>Zhang, Yuan</au><au>Shi, Xiu‐Rong</au><au>Shan, Jun</au><au>AlZoubi, Alaa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Assisted Doppler Features for Enhancing Thyroid Cancer Diagnosis: A Multi‐Cohort Study</atitle><jtitle>Journal of ultrasound in medicine</jtitle><date>2022-08</date><risdate>2022</risdate><volume>41</volume><issue>8</issue><spage>1961</spage><epage>1974</epage><pages>1961-1974</pages><issn>0278-4297</issn><eissn>1550-9613</eissn><abstract>BACKGROUNDThis pilot study aims at exploiting machine learning techniques to extract color Doppler ultrasound (CDUS) features and to build an artificial neural network (ANN) model based on these CDUS features for improving the diagnostic performance of thyroid cancer classification. METHODSA total of 674 patients with 712 thyroid nodules (TNs) (512 from internal dataset and 200 from external dataset) were randomly selected in this retrospective study. We used ANN to build a model (TDUS-Net) for classifying malignant and benign TNs using both the automatically extracted quantitative CDUS features (whole ratio, intranodular ratio, peripheral ratio, and number of vessels) and gray-scale ultrasound (US) features defined by the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS). Then, we compared the diagnostic performance of the model, the performance of another ANN model based on the gray-scale US features alone (TUS-Net), and that of radiologists. RESULTSThe TDUS-Net (0.898, 95% CI: 0.868-0.922) achieved a higher area under the curve (AUC) than that of TUS-Net (0.881, 95% CI: 0.850-0.908) in the internal tests. Compared with radiologists, TDUS-Net (AUC: 0.925, 95% CI: 0.880-0.958) performed better than radiologists (AUC: 0.810, 95% CI: 0.749-0.862) in the external tests. CONCLUSIONSApplying a machine learning model by combining both gray-scale US features and CDUS features can achieve comparable or even higher performance than radiologists in classifying TNs.</abstract><doi>10.1002/jum.15873</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5154-7231</orcidid><orcidid>https://orcid.org/0000-0003-3037-0398</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-4297
ispartof Journal of ultrasound in medicine, 2022-08, Vol.41 (8), p.1961-1974
issn 0278-4297
1550-9613
language eng
recordid cdi_proquest_miscellaneous_2595568344
source Access via Wiley Online Library
title Machine Learning Assisted Doppler Features for Enhancing Thyroid Cancer Diagnosis: A Multi‐Cohort Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Assisted%20Doppler%20Features%20for%20Enhancing%20Thyroid%20Cancer%20Diagnosis:%20A%20Multi%E2%80%90Cohort%20Study&rft.jtitle=Journal%20of%20ultrasound%20in%20medicine&rft.au=Zhu,%20Yi%E2%80%90Cheng&rft.date=2022-08&rft.volume=41&rft.issue=8&rft.spage=1961&rft.epage=1974&rft.pages=1961-1974&rft.issn=0278-4297&rft.eissn=1550-9613&rft_id=info:doi/10.1002/jum.15873&rft_dat=%3Cproquest_cross%3E2595568344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595568344&rft_id=info:pmid/&rfr_iscdi=true