Incidence and prediction of HBsAg seroclearance in a prospective multi‐ethnic HBeAg‐negative chronic hepatitis B cohort
Background and Aims Achieving HBsAg loss is an important landmark in the natural history of chronic hepatitis B (CHB). A more personalized approach to prediction of HBsAg loss is relevant in counseling patients. This study sought to develop and validate a prediction model for HBsAg loss based on qua...
Gespeichert in:
Veröffentlicht in: | Hepatology (Baltimore, Md.) Md.), 2022-03, Vol.75 (3), p.709-723 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 723 |
---|---|
container_issue | 3 |
container_start_page | 709 |
container_title | Hepatology (Baltimore, Md.) |
container_volume | 75 |
creator | Terrault, Norah A. Wahed, Abdus S. Feld, Jordan J. Cooper, Stewart L. Ghany, Mark G. Lisker‐Melman, Mauricio Perrillo, Robert Sterling, Richard K. Khalili, Mandana Chung, Raymond T. Rosenthal, Philip Fontana, Robert J. Sarowar, Arif Lau, Daryl T. Y. Wang, Junyao Lok, Anna S. Janssen, Harry L. A. |
description | Background and Aims
Achieving HBsAg loss is an important landmark in the natural history of chronic hepatitis B (CHB). A more personalized approach to prediction of HBsAg loss is relevant in counseling patients. This study sought to develop and validate a prediction model for HBsAg loss based on quantitative HBsAg levels (qHBsAg) and other baseline characteristics.
Methods
The Hepatitis B Research Network (HBRN) is a prospective cohort including 1240 untreated HBeAg‐negative patients (1150 adults, 90 children) with median follow‐up of 5.5 years. Incidence rates of HBsAg loss and hepatitis B surface antibody (anti‐HBs) acquisition were determined, and a predictor score of HBsAg loss using readily available variables was developed and externally validated.
Results
Crude incidence rates of HBsAg loss and anti‐HBs acquisition were 1.6 and 1.1 per 100 person‐years (PY); 67 achieved sustained HBsAg loss for an incidence rate of 1.2 per 100 PY. Increased HBsAg loss was significantly associated with older age, non‐Asian race, HBV phenotype (inactive CHB vs. others), HBV genotype A, lower HBV‐DNA levels, and lower and greater change in qHBsAg. The HBRN‐SQuARe (sex,∆quantHBsAg, age, race) score predicted HBsAg loss over time with area under the receiver operating characteristic curve (AUROC) (95% CIs) at 1 and 3 years of 0.99 (95% CI: 0.987–1.00) and 0.95 (95% CI 0.91–1.00), respectively. In validation in another cohort of 1253 HBeAg‐negative patients with median follow‐up of 3.1 years, HBRN SQuARe predicted HBsAg loss at 1 and 3 years with AUROC values of 0.99 (0.98–1.00) and 0.88 (0.77–0.99), respectively.
Conclusion
HBsAg loss in predominantly untreated patients with HBeAg‐negative CHB can be accurately predicted over a 3‐year horizon using a simple validated score (HBRN SQuARe). This prognostication tool can be used to support patient care and counseling. |
doi_str_mv | 10.1002/hep.32231 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2595111794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628292527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-861f42f53e93ccb45ba03618cadef5c2f4f294ce179165a173f0254acdc040003</originalsourceid><addsrcrecordid>eNp1kc9OGzEQxi3UqqTQAy-ALHGhhwX_ze4eA6INElI5wNlyvOPEaGMHe7cV4tJH6DP2STohtAeknqzx_ObTN_MRcsTZGWdMnK9gcyaFkHyPTLgWdSWlZu_IhImaVS2X7T75WMoDY6xVovlA9qWqlZRKTsjzdXShg-iA2tjRTYYuuCGkSJOn84syW9ICObkebLZbKkRqEUtlA8h9B7oe-yH8_vkLhlUMDmdgtsQywtK-9N0qp20DTeLHEAq9oC6tUh4OyXtv-wKfXt8Dcv_l6u5yXt18-3p9ObupnGwaXjVT7pXwWkIrnVsovbBMTnnjbAdeO-GVF61ywOuWT7XltfRMaGVd55jCneUBOd3pou3HEcpg1qE46HsbIY3FCN1qznFcIXryBn1IY47ozoipaEQr8LxIfd5RDu9QMnizyWFt85PhzGwTMbiseUkE2eNXxXGxhu4f-TcCBM53wI_Qw9P_lcz86nYn-QdvIJbX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628292527</pqid></control><display><type>article</type><title>Incidence and prediction of HBsAg seroclearance in a prospective multi‐ethnic HBeAg‐negative chronic hepatitis B cohort</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Terrault, Norah A. ; Wahed, Abdus S. ; Feld, Jordan J. ; Cooper, Stewart L. ; Ghany, Mark G. ; Lisker‐Melman, Mauricio ; Perrillo, Robert ; Sterling, Richard K. ; Khalili, Mandana ; Chung, Raymond T. ; Rosenthal, Philip ; Fontana, Robert J. ; Sarowar, Arif ; Lau, Daryl T. Y. ; Wang, Junyao ; Lok, Anna S. ; Janssen, Harry L. A.</creator><creatorcontrib>Terrault, Norah A. ; Wahed, Abdus S. ; Feld, Jordan J. ; Cooper, Stewart L. ; Ghany, Mark G. ; Lisker‐Melman, Mauricio ; Perrillo, Robert ; Sterling, Richard K. ; Khalili, Mandana ; Chung, Raymond T. ; Rosenthal, Philip ; Fontana, Robert J. ; Sarowar, Arif ; Lau, Daryl T. Y. ; Wang, Junyao ; Lok, Anna S. ; Janssen, Harry L. A.</creatorcontrib><description>Background and Aims
Achieving HBsAg loss is an important landmark in the natural history of chronic hepatitis B (CHB). A more personalized approach to prediction of HBsAg loss is relevant in counseling patients. This study sought to develop and validate a prediction model for HBsAg loss based on quantitative HBsAg levels (qHBsAg) and other baseline characteristics.
Methods
The Hepatitis B Research Network (HBRN) is a prospective cohort including 1240 untreated HBeAg‐negative patients (1150 adults, 90 children) with median follow‐up of 5.5 years. Incidence rates of HBsAg loss and hepatitis B surface antibody (anti‐HBs) acquisition were determined, and a predictor score of HBsAg loss using readily available variables was developed and externally validated.
Results
Crude incidence rates of HBsAg loss and anti‐HBs acquisition were 1.6 and 1.1 per 100 person‐years (PY); 67 achieved sustained HBsAg loss for an incidence rate of 1.2 per 100 PY. Increased HBsAg loss was significantly associated with older age, non‐Asian race, HBV phenotype (inactive CHB vs. others), HBV genotype A, lower HBV‐DNA levels, and lower and greater change in qHBsAg. The HBRN‐SQuARe (sex,∆quantHBsAg, age, race) score predicted HBsAg loss over time with area under the receiver operating characteristic curve (AUROC) (95% CIs) at 1 and 3 years of 0.99 (95% CI: 0.987–1.00) and 0.95 (95% CI 0.91–1.00), respectively. In validation in another cohort of 1253 HBeAg‐negative patients with median follow‐up of 3.1 years, HBRN SQuARe predicted HBsAg loss at 1 and 3 years with AUROC values of 0.99 (0.98–1.00) and 0.88 (0.77–0.99), respectively.
Conclusion
HBsAg loss in predominantly untreated patients with HBeAg‐negative CHB can be accurately predicted over a 3‐year horizon using a simple validated score (HBRN SQuARe). This prognostication tool can be used to support patient care and counseling.</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.32231</identifier><identifier>PMID: 34743343</identifier><language>eng</language><publisher>United States: Wolters Kluwer Health, Inc</publisher><subject>Adult ; Age Factors ; Child ; Ethnicity - statistics & numerical data ; Female ; Follow-Up Studies ; Genotypes ; Hepatitis B ; Hepatitis B Antibodies - analysis ; Hepatitis B Antibodies - blood ; Hepatitis B e antigen ; Hepatitis B surface antigen ; Hepatitis B Surface Antigens - analysis ; Hepatitis B Surface Antigens - blood ; Hepatitis B Surface Antigens - immunology ; Hepatitis B virus - genetics ; Hepatitis B, Chronic - diagnosis ; Hepatitis B, Chronic - immunology ; Hepatology ; Humans ; Incidence ; Interferon ; Male ; Phenotypes ; Prediction models ; Predictive Value of Tests ; Prognosis ; Serologic Tests - methods ; Serologic Tests - statistics & numerical data ; Sustained Virologic Response</subject><ispartof>Hepatology (Baltimore, Md.), 2022-03, Vol.75 (3), p.709-723</ispartof><rights>2021 American Association for the Study of Liver Diseases.</rights><rights>2022 by the American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-861f42f53e93ccb45ba03618cadef5c2f4f294ce179165a173f0254acdc040003</citedby><cites>FETCH-LOGICAL-c3881-861f42f53e93ccb45ba03618cadef5c2f4f294ce179165a173f0254acdc040003</cites><orcidid>0000-0002-8637-2475 ; 0000-0001-9178-9139 ; 0000-0003-4139-1987 ; 0000-0003-4143-1950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.32231$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.32231$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34743343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Terrault, Norah A.</creatorcontrib><creatorcontrib>Wahed, Abdus S.</creatorcontrib><creatorcontrib>Feld, Jordan J.</creatorcontrib><creatorcontrib>Cooper, Stewart L.</creatorcontrib><creatorcontrib>Ghany, Mark G.</creatorcontrib><creatorcontrib>Lisker‐Melman, Mauricio</creatorcontrib><creatorcontrib>Perrillo, Robert</creatorcontrib><creatorcontrib>Sterling, Richard K.</creatorcontrib><creatorcontrib>Khalili, Mandana</creatorcontrib><creatorcontrib>Chung, Raymond T.</creatorcontrib><creatorcontrib>Rosenthal, Philip</creatorcontrib><creatorcontrib>Fontana, Robert J.</creatorcontrib><creatorcontrib>Sarowar, Arif</creatorcontrib><creatorcontrib>Lau, Daryl T. Y.</creatorcontrib><creatorcontrib>Wang, Junyao</creatorcontrib><creatorcontrib>Lok, Anna S.</creatorcontrib><creatorcontrib>Janssen, Harry L. A.</creatorcontrib><title>Incidence and prediction of HBsAg seroclearance in a prospective multi‐ethnic HBeAg‐negative chronic hepatitis B cohort</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Background and Aims
Achieving HBsAg loss is an important landmark in the natural history of chronic hepatitis B (CHB). A more personalized approach to prediction of HBsAg loss is relevant in counseling patients. This study sought to develop and validate a prediction model for HBsAg loss based on quantitative HBsAg levels (qHBsAg) and other baseline characteristics.
Methods
The Hepatitis B Research Network (HBRN) is a prospective cohort including 1240 untreated HBeAg‐negative patients (1150 adults, 90 children) with median follow‐up of 5.5 years. Incidence rates of HBsAg loss and hepatitis B surface antibody (anti‐HBs) acquisition were determined, and a predictor score of HBsAg loss using readily available variables was developed and externally validated.
Results
Crude incidence rates of HBsAg loss and anti‐HBs acquisition were 1.6 and 1.1 per 100 person‐years (PY); 67 achieved sustained HBsAg loss for an incidence rate of 1.2 per 100 PY. Increased HBsAg loss was significantly associated with older age, non‐Asian race, HBV phenotype (inactive CHB vs. others), HBV genotype A, lower HBV‐DNA levels, and lower and greater change in qHBsAg. The HBRN‐SQuARe (sex,∆quantHBsAg, age, race) score predicted HBsAg loss over time with area under the receiver operating characteristic curve (AUROC) (95% CIs) at 1 and 3 years of 0.99 (95% CI: 0.987–1.00) and 0.95 (95% CI 0.91–1.00), respectively. In validation in another cohort of 1253 HBeAg‐negative patients with median follow‐up of 3.1 years, HBRN SQuARe predicted HBsAg loss at 1 and 3 years with AUROC values of 0.99 (0.98–1.00) and 0.88 (0.77–0.99), respectively.
Conclusion
HBsAg loss in predominantly untreated patients with HBeAg‐negative CHB can be accurately predicted over a 3‐year horizon using a simple validated score (HBRN SQuARe). This prognostication tool can be used to support patient care and counseling.</description><subject>Adult</subject><subject>Age Factors</subject><subject>Child</subject><subject>Ethnicity - statistics & numerical data</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Genotypes</subject><subject>Hepatitis B</subject><subject>Hepatitis B Antibodies - analysis</subject><subject>Hepatitis B Antibodies - blood</subject><subject>Hepatitis B e antigen</subject><subject>Hepatitis B surface antigen</subject><subject>Hepatitis B Surface Antigens - analysis</subject><subject>Hepatitis B Surface Antigens - blood</subject><subject>Hepatitis B Surface Antigens - immunology</subject><subject>Hepatitis B virus - genetics</subject><subject>Hepatitis B, Chronic - diagnosis</subject><subject>Hepatitis B, Chronic - immunology</subject><subject>Hepatology</subject><subject>Humans</subject><subject>Incidence</subject><subject>Interferon</subject><subject>Male</subject><subject>Phenotypes</subject><subject>Prediction models</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Serologic Tests - methods</subject><subject>Serologic Tests - statistics & numerical data</subject><subject>Sustained Virologic Response</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9OGzEQxi3UqqTQAy-ALHGhhwX_ze4eA6INElI5wNlyvOPEaGMHe7cV4tJH6DP2STohtAeknqzx_ObTN_MRcsTZGWdMnK9gcyaFkHyPTLgWdSWlZu_IhImaVS2X7T75WMoDY6xVovlA9qWqlZRKTsjzdXShg-iA2tjRTYYuuCGkSJOn84syW9ICObkebLZbKkRqEUtlA8h9B7oe-yH8_vkLhlUMDmdgtsQywtK-9N0qp20DTeLHEAq9oC6tUh4OyXtv-wKfXt8Dcv_l6u5yXt18-3p9ObupnGwaXjVT7pXwWkIrnVsovbBMTnnjbAdeO-GVF61ywOuWT7XltfRMaGVd55jCneUBOd3pou3HEcpg1qE46HsbIY3FCN1qznFcIXryBn1IY47ozoipaEQr8LxIfd5RDu9QMnizyWFt85PhzGwTMbiseUkE2eNXxXGxhu4f-TcCBM53wI_Qw9P_lcz86nYn-QdvIJbX</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Terrault, Norah A.</creator><creator>Wahed, Abdus S.</creator><creator>Feld, Jordan J.</creator><creator>Cooper, Stewart L.</creator><creator>Ghany, Mark G.</creator><creator>Lisker‐Melman, Mauricio</creator><creator>Perrillo, Robert</creator><creator>Sterling, Richard K.</creator><creator>Khalili, Mandana</creator><creator>Chung, Raymond T.</creator><creator>Rosenthal, Philip</creator><creator>Fontana, Robert J.</creator><creator>Sarowar, Arif</creator><creator>Lau, Daryl T. Y.</creator><creator>Wang, Junyao</creator><creator>Lok, Anna S.</creator><creator>Janssen, Harry L. A.</creator><general>Wolters Kluwer Health, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8637-2475</orcidid><orcidid>https://orcid.org/0000-0001-9178-9139</orcidid><orcidid>https://orcid.org/0000-0003-4139-1987</orcidid><orcidid>https://orcid.org/0000-0003-4143-1950</orcidid></search><sort><creationdate>202203</creationdate><title>Incidence and prediction of HBsAg seroclearance in a prospective multi‐ethnic HBeAg‐negative chronic hepatitis B cohort</title><author>Terrault, Norah A. ; Wahed, Abdus S. ; Feld, Jordan J. ; Cooper, Stewart L. ; Ghany, Mark G. ; Lisker‐Melman, Mauricio ; Perrillo, Robert ; Sterling, Richard K. ; Khalili, Mandana ; Chung, Raymond T. ; Rosenthal, Philip ; Fontana, Robert J. ; Sarowar, Arif ; Lau, Daryl T. Y. ; Wang, Junyao ; Lok, Anna S. ; Janssen, Harry L. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-861f42f53e93ccb45ba03618cadef5c2f4f294ce179165a173f0254acdc040003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adult</topic><topic>Age Factors</topic><topic>Child</topic><topic>Ethnicity - statistics & numerical data</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Genotypes</topic><topic>Hepatitis B</topic><topic>Hepatitis B Antibodies - analysis</topic><topic>Hepatitis B Antibodies - blood</topic><topic>Hepatitis B e antigen</topic><topic>Hepatitis B surface antigen</topic><topic>Hepatitis B Surface Antigens - analysis</topic><topic>Hepatitis B Surface Antigens - blood</topic><topic>Hepatitis B Surface Antigens - immunology</topic><topic>Hepatitis B virus - genetics</topic><topic>Hepatitis B, Chronic - diagnosis</topic><topic>Hepatitis B, Chronic - immunology</topic><topic>Hepatology</topic><topic>Humans</topic><topic>Incidence</topic><topic>Interferon</topic><topic>Male</topic><topic>Phenotypes</topic><topic>Prediction models</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Serologic Tests - methods</topic><topic>Serologic Tests - statistics & numerical data</topic><topic>Sustained Virologic Response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terrault, Norah A.</creatorcontrib><creatorcontrib>Wahed, Abdus S.</creatorcontrib><creatorcontrib>Feld, Jordan J.</creatorcontrib><creatorcontrib>Cooper, Stewart L.</creatorcontrib><creatorcontrib>Ghany, Mark G.</creatorcontrib><creatorcontrib>Lisker‐Melman, Mauricio</creatorcontrib><creatorcontrib>Perrillo, Robert</creatorcontrib><creatorcontrib>Sterling, Richard K.</creatorcontrib><creatorcontrib>Khalili, Mandana</creatorcontrib><creatorcontrib>Chung, Raymond T.</creatorcontrib><creatorcontrib>Rosenthal, Philip</creatorcontrib><creatorcontrib>Fontana, Robert J.</creatorcontrib><creatorcontrib>Sarowar, Arif</creatorcontrib><creatorcontrib>Lau, Daryl T. Y.</creatorcontrib><creatorcontrib>Wang, Junyao</creatorcontrib><creatorcontrib>Lok, Anna S.</creatorcontrib><creatorcontrib>Janssen, Harry L. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terrault, Norah A.</au><au>Wahed, Abdus S.</au><au>Feld, Jordan J.</au><au>Cooper, Stewart L.</au><au>Ghany, Mark G.</au><au>Lisker‐Melman, Mauricio</au><au>Perrillo, Robert</au><au>Sterling, Richard K.</au><au>Khalili, Mandana</au><au>Chung, Raymond T.</au><au>Rosenthal, Philip</au><au>Fontana, Robert J.</au><au>Sarowar, Arif</au><au>Lau, Daryl T. Y.</au><au>Wang, Junyao</au><au>Lok, Anna S.</au><au>Janssen, Harry L. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incidence and prediction of HBsAg seroclearance in a prospective multi‐ethnic HBeAg‐negative chronic hepatitis B cohort</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2022-03</date><risdate>2022</risdate><volume>75</volume><issue>3</issue><spage>709</spage><epage>723</epage><pages>709-723</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><abstract>Background and Aims
Achieving HBsAg loss is an important landmark in the natural history of chronic hepatitis B (CHB). A more personalized approach to prediction of HBsAg loss is relevant in counseling patients. This study sought to develop and validate a prediction model for HBsAg loss based on quantitative HBsAg levels (qHBsAg) and other baseline characteristics.
Methods
The Hepatitis B Research Network (HBRN) is a prospective cohort including 1240 untreated HBeAg‐negative patients (1150 adults, 90 children) with median follow‐up of 5.5 years. Incidence rates of HBsAg loss and hepatitis B surface antibody (anti‐HBs) acquisition were determined, and a predictor score of HBsAg loss using readily available variables was developed and externally validated.
Results
Crude incidence rates of HBsAg loss and anti‐HBs acquisition were 1.6 and 1.1 per 100 person‐years (PY); 67 achieved sustained HBsAg loss for an incidence rate of 1.2 per 100 PY. Increased HBsAg loss was significantly associated with older age, non‐Asian race, HBV phenotype (inactive CHB vs. others), HBV genotype A, lower HBV‐DNA levels, and lower and greater change in qHBsAg. The HBRN‐SQuARe (sex,∆quantHBsAg, age, race) score predicted HBsAg loss over time with area under the receiver operating characteristic curve (AUROC) (95% CIs) at 1 and 3 years of 0.99 (95% CI: 0.987–1.00) and 0.95 (95% CI 0.91–1.00), respectively. In validation in another cohort of 1253 HBeAg‐negative patients with median follow‐up of 3.1 years, HBRN SQuARe predicted HBsAg loss at 1 and 3 years with AUROC values of 0.99 (0.98–1.00) and 0.88 (0.77–0.99), respectively.
Conclusion
HBsAg loss in predominantly untreated patients with HBeAg‐negative CHB can be accurately predicted over a 3‐year horizon using a simple validated score (HBRN SQuARe). This prognostication tool can be used to support patient care and counseling.</abstract><cop>United States</cop><pub>Wolters Kluwer Health, Inc</pub><pmid>34743343</pmid><doi>10.1002/hep.32231</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8637-2475</orcidid><orcidid>https://orcid.org/0000-0001-9178-9139</orcidid><orcidid>https://orcid.org/0000-0003-4139-1987</orcidid><orcidid>https://orcid.org/0000-0003-4143-1950</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-9139 |
ispartof | Hepatology (Baltimore, Md.), 2022-03, Vol.75 (3), p.709-723 |
issn | 0270-9139 1527-3350 |
language | eng |
recordid | cdi_proquest_miscellaneous_2595111794 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adult Age Factors Child Ethnicity - statistics & numerical data Female Follow-Up Studies Genotypes Hepatitis B Hepatitis B Antibodies - analysis Hepatitis B Antibodies - blood Hepatitis B e antigen Hepatitis B surface antigen Hepatitis B Surface Antigens - analysis Hepatitis B Surface Antigens - blood Hepatitis B Surface Antigens - immunology Hepatitis B virus - genetics Hepatitis B, Chronic - diagnosis Hepatitis B, Chronic - immunology Hepatology Humans Incidence Interferon Male Phenotypes Prediction models Predictive Value of Tests Prognosis Serologic Tests - methods Serologic Tests - statistics & numerical data Sustained Virologic Response |
title | Incidence and prediction of HBsAg seroclearance in a prospective multi‐ethnic HBeAg‐negative chronic hepatitis B cohort |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A10%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incidence%20and%20prediction%20of%20HBsAg%20seroclearance%20in%20a%20prospective%20multi%E2%80%90ethnic%20HBeAg%E2%80%90negative%20chronic%20hepatitis%20B%20cohort&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Terrault,%20Norah%20A.&rft.date=2022-03&rft.volume=75&rft.issue=3&rft.spage=709&rft.epage=723&rft.pages=709-723&rft.issn=0270-9139&rft.eissn=1527-3350&rft_id=info:doi/10.1002/hep.32231&rft_dat=%3Cproquest_cross%3E2628292527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628292527&rft_id=info:pmid/34743343&rfr_iscdi=true |