The effects of ozone treatments on the agro-physiological parameters of tomato plants and the soil microbial community

Ozone has been applied in many processes (drinking water disinfection and wastewater treatment, among others) based on its high degree of effectiveness as a wide-spectrum disinfectant and its potential for the degradation of pollutants and pesticides. Nevertheless, the effects of irrigation with ozo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-03, Vol.812, p.151429-151429, Article 151429
Hauptverfasser: Díaz-López, Marta, Siles, José A., Ros, Caridad, Bastida, Felipe, Nicolás, Emilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ozone has been applied in many processes (drinking water disinfection and wastewater treatment, among others) based on its high degree of effectiveness as a wide-spectrum disinfectant and its potential for the degradation of pollutants and pesticides. Nevertheless, the effects of irrigation with ozonated water on the soil microbial community and plant physiology and productivity at the field scale are largely unknown. Here, we assessed the impact of irrigation with ozonated water on the microbial community of a Mediterranean soil and on Solanum lycopersicum L. agro-physiology and productivity in a greenhouse experiment. For this purpose, we evaluated: i) soil physicochemical properties, soil enzyme activities, and the biomass (through analysis of microbial fatty acids) and diversity (through 16S rRNA gene and ITS2 amplicon sequencing) of the soil microbial community, and ii) the nutrient content, physiology, yield, and fruit quality of tomato plants. Overall, the soil physicochemical properties were slightly affected by the treatments applied, showing some differences between continuous and intermittent irrigation with ozonated water. Only the soil pH was significantly reduced by continuous irrigation with ozonated water at the end of the assay. Biochemical parameters (enzymatic activities) showed no significant differences between the treatments studied. The biomasses of Gram- bacteria and fungi were decreased by intermittent and continuous irrigation with ozonated water, respectively. However, the diversity, structure, and composition of the soil microbial community were not affected by the ozone treatments. Changes in soil properties slightly affected tomato plant physiology but did not affect yield or fruit quality. The stomatal conductance was reduced and the intrinsic water use efficiency was increased by continuous irrigation with ozonated water. Our results suggest that soil health and fertility were not compromised, however ozonated water treatments should be tailored to individual crop conditions to avoid adverse effects. [Display omitted] •Overall soil physicochemical parameters were not affected by ozonated water.•Physiological status of tomato plants was evaluated after ozonation of irrigation water.•Irrigation with ozonated water did not affect the enzyme activities tested.•The biomasses of Gram− bacteria and fungi were reduced by OZ2 and OZ1, respectively.•The fruit quality was not affected by irrigation with ozonated water in tomato.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.151429