MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction
Single‐atom cobalt‐based CoNC are promising low‐cost electrocatalysts for oxygen reduction reaction (ORR). However, further increasing the single cobalt‐based active sites and the ORR activity remain a major challenge. Herein, an acetate (OAc) assisted metal–organic framework (MOF) structure‐engin...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-12, Vol.17 (49), p.e2104684-n/a, Article 2104684 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 49 |
container_start_page | e2104684 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 17 |
creator | Gao, Jiaojiao Hu, Yixuan Wang, Yu Lin, Xiaorong Hu, Kailong Lin, Xi Xie, Guoqiang Liu, Xingjun Reddy, Kolan Madhav Yuan, Qunhui Qiu, Hua‐Jun |
description | Single‐atom cobalt‐based CoNC are promising low‐cost electrocatalysts for oxygen reduction reaction (ORR). However, further increasing the single cobalt‐based active sites and the ORR activity remain a major challenge. Herein, an acetate (OAc) assisted metal–organic framework (MOF) structure‐engineering strategy is developed to synthesize hierarchical accordion‐like MOF with higher loading amount and better spatial isolation of Co and much higher yield when compared with widely reported polyhedron MOF. After pyrolysis, the accordion‐structured CoNC (CoNC (A)) is loaded with denser CoN4 active sites (Co: 2.88 wt%), approximately twice that of Co in the CoNC reported. The presence of OAc in MOF also induces the generation of big pores (5–50 nm) for improving the accessibility of active sites and mass transfer during catalytic reactions. Consequently, the CoNC (A) catalyst shows an admirable ORR activity with a E1/2 of 0.89 V (40 mV better than Pt/C) in alkaline electrolytes, outstanding durability, and absolute tolerance to methanol in both alkaline and acidic media. The CoNC‐based Zn‐air battery exhibits a high specific capacity (976 mAh g−1Zn), power density (158 mW cm−2), rate capability, and long‐term stability. This work demonstrates a reliable approach to construct single atom doped carbon catalysts with denser accessible active sites through MOF structure engineering.
A new accordion‐like zeolitic‐imidazole framework (ZIF) with high Co ion loading amount and dispersity is prepared by metal–organic framework (MOF) structure engineering. The acetate (OAc) plays an important role in stabilization of more Co ions and formation of large pores during carbonization. The obtained CoNC (A) contains high density of accessible single atom Co‐based active sites and exhibits greatly enhanced oxygen reduction reaction (ORR) activity. |
doi_str_mv | 10.1002/smll.202104684 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2594297776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594297776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3504-d9e9b4592dd50742bca5e02671ace1d39e3af7220632a981552cc218d057b1b43</originalsourceid><addsrcrecordid>eNqNkc1uEzEUhUcIREthy9oSGySUcP0z4_GyGrWAlBKpgfXI47mTuJrYxfa0BImn4UF4JF4BR6mCxAYWls_iO9fH9xTFSwpzCsDexu04zhkwCqKqxaPilFaUz6qaqcdHTeGkeBbjDQCnTMinxQkXkteSw2nx_Wp5SVYpTCZNAcmFW1uHGKxbk-TJaufSBqP9hqTxv378_JhPQxqd9LiLidzbtCHX1mwwkHNjMEbbjZhlsndIVjZhJIMPeepGO4M9WX7drdGRa-zze9a758WTQY8RXzzcZ8Xny4tPzfvZYvnuQ3O-mBlegpj1ClUnSsX6vgQpWGd0icAqSbVB2nOFXA-SMag406qmZcmMYbTuoZQd7QQ_K14f5t4G_2XCmNqtjQbHUTv0U2xZqQRTUsoqo6_-Qm_8FFxO17IKagAhKM_U_ECZ4GMMOLS3wW512LUU2n0x7b6Y9lhMNrw5GO6x80M0FvNCjiYAkDR_UKqsgGa6_n-6sUnvl9n4yaVsVQ9WO-LuH7Ha1dVi8Sfkb1nNs0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608004413</pqid></control><display><type>article</type><title>MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Gao, Jiaojiao ; Hu, Yixuan ; Wang, Yu ; Lin, Xiaorong ; Hu, Kailong ; Lin, Xi ; Xie, Guoqiang ; Liu, Xingjun ; Reddy, Kolan Madhav ; Yuan, Qunhui ; Qiu, Hua‐Jun</creator><creatorcontrib>Gao, Jiaojiao ; Hu, Yixuan ; Wang, Yu ; Lin, Xiaorong ; Hu, Kailong ; Lin, Xi ; Xie, Guoqiang ; Liu, Xingjun ; Reddy, Kolan Madhav ; Yuan, Qunhui ; Qiu, Hua‐Jun</creatorcontrib><description>Single‐atom cobalt‐based CoNC are promising low‐cost electrocatalysts for oxygen reduction reaction (ORR). However, further increasing the single cobalt‐based active sites and the ORR activity remain a major challenge. Herein, an acetate (OAc) assisted metal–organic framework (MOF) structure‐engineering strategy is developed to synthesize hierarchical accordion‐like MOF with higher loading amount and better spatial isolation of Co and much higher yield when compared with widely reported polyhedron MOF. After pyrolysis, the accordion‐structured CoNC (CoNC (A)) is loaded with denser CoN4 active sites (Co: 2.88 wt%), approximately twice that of Co in the CoNC reported. The presence of OAc in MOF also induces the generation of big pores (5–50 nm) for improving the accessibility of active sites and mass transfer during catalytic reactions. Consequently, the CoNC (A) catalyst shows an admirable ORR activity with a E1/2 of 0.89 V (40 mV better than Pt/C) in alkaline electrolytes, outstanding durability, and absolute tolerance to methanol in both alkaline and acidic media. The CoNC‐based Zn‐air battery exhibits a high specific capacity (976 mAh g−1Zn), power density (158 mW cm−2), rate capability, and long‐term stability. This work demonstrates a reliable approach to construct single atom doped carbon catalysts with denser accessible active sites through MOF structure engineering.
A new accordion‐like zeolitic‐imidazole framework (ZIF) with high Co ion loading amount and dispersity is prepared by metal–organic framework (MOF) structure engineering. The acetate (OAc) plays an important role in stabilization of more Co ions and formation of large pores during carbonization. The obtained CoNC (A) contains high density of accessible single atom Co‐based active sites and exhibits greatly enhanced oxygen reduction reaction (ORR) activity.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202104684</identifier><identifier>PMID: 34738730</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Accessibility ; Catalysts ; Chemical synthesis ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Cobalt ; Electrocatalysts ; Electrolytes ; Mass transfer ; Materials Science ; Materials Science, Multidisciplinary ; Metal air batteries ; Metal-organic frameworks ; Nanoscience & Nanotechnology ; Nanotechnology ; ORR ; Oxygen reduction reactions ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Pyrolysis ; Science & Technology ; Science & Technology - Other Topics ; single atoms ; structure engineering ; Technology</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-12, Vol.17 (49), p.e2104684-n/a, Article 2104684</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>112</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000714597900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3504-d9e9b4592dd50742bca5e02671ace1d39e3af7220632a981552cc218d057b1b43</citedby><cites>FETCH-LOGICAL-c3504-d9e9b4592dd50742bca5e02671ace1d39e3af7220632a981552cc218d057b1b43</cites><orcidid>0000-0003-0396-1942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202104684$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202104684$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,39267,45583,45584</link.rule.ids></links><search><creatorcontrib>Gao, Jiaojiao</creatorcontrib><creatorcontrib>Hu, Yixuan</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Lin, Xiaorong</creatorcontrib><creatorcontrib>Hu, Kailong</creatorcontrib><creatorcontrib>Lin, Xi</creatorcontrib><creatorcontrib>Xie, Guoqiang</creatorcontrib><creatorcontrib>Liu, Xingjun</creatorcontrib><creatorcontrib>Reddy, Kolan Madhav</creatorcontrib><creatorcontrib>Yuan, Qunhui</creatorcontrib><creatorcontrib>Qiu, Hua‐Jun</creatorcontrib><title>MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>SMALL</addtitle><description>Single‐atom cobalt‐based CoNC are promising low‐cost electrocatalysts for oxygen reduction reaction (ORR). However, further increasing the single cobalt‐based active sites and the ORR activity remain a major challenge. Herein, an acetate (OAc) assisted metal–organic framework (MOF) structure‐engineering strategy is developed to synthesize hierarchical accordion‐like MOF with higher loading amount and better spatial isolation of Co and much higher yield when compared with widely reported polyhedron MOF. After pyrolysis, the accordion‐structured CoNC (CoNC (A)) is loaded with denser CoN4 active sites (Co: 2.88 wt%), approximately twice that of Co in the CoNC reported. The presence of OAc in MOF also induces the generation of big pores (5–50 nm) for improving the accessibility of active sites and mass transfer during catalytic reactions. Consequently, the CoNC (A) catalyst shows an admirable ORR activity with a E1/2 of 0.89 V (40 mV better than Pt/C) in alkaline electrolytes, outstanding durability, and absolute tolerance to methanol in both alkaline and acidic media. The CoNC‐based Zn‐air battery exhibits a high specific capacity (976 mAh g−1Zn), power density (158 mW cm−2), rate capability, and long‐term stability. This work demonstrates a reliable approach to construct single atom doped carbon catalysts with denser accessible active sites through MOF structure engineering.
A new accordion‐like zeolitic‐imidazole framework (ZIF) with high Co ion loading amount and dispersity is prepared by metal–organic framework (MOF) structure engineering. The acetate (OAc) plays an important role in stabilization of more Co ions and formation of large pores during carbonization. The obtained CoNC (A) contains high density of accessible single atom Co‐based active sites and exhibits greatly enhanced oxygen reduction reaction (ORR) activity.</description><subject>Accessibility</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Cobalt</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Mass transfer</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metal air batteries</subject><subject>Metal-organic frameworks</subject><subject>Nanoscience & Nanotechnology</subject><subject>Nanotechnology</subject><subject>ORR</subject><subject>Oxygen reduction reactions</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Pyrolysis</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>single atoms</subject><subject>structure engineering</subject><subject>Technology</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkc1uEzEUhUcIREthy9oSGySUcP0z4_GyGrWAlBKpgfXI47mTuJrYxfa0BImn4UF4JF4BR6mCxAYWls_iO9fH9xTFSwpzCsDexu04zhkwCqKqxaPilFaUz6qaqcdHTeGkeBbjDQCnTMinxQkXkteSw2nx_Wp5SVYpTCZNAcmFW1uHGKxbk-TJaufSBqP9hqTxv378_JhPQxqd9LiLidzbtCHX1mwwkHNjMEbbjZhlsndIVjZhJIMPeepGO4M9WX7drdGRa-zze9a758WTQY8RXzzcZ8Xny4tPzfvZYvnuQ3O-mBlegpj1ClUnSsX6vgQpWGd0icAqSbVB2nOFXA-SMag406qmZcmMYbTuoZQd7QQ_K14f5t4G_2XCmNqtjQbHUTv0U2xZqQRTUsoqo6_-Qm_8FFxO17IKagAhKM_U_ECZ4GMMOLS3wW512LUU2n0x7b6Y9lhMNrw5GO6x80M0FvNCjiYAkDR_UKqsgGa6_n-6sUnvl9n4yaVsVQ9WO-LuH7Ha1dVi8Sfkb1nNs0I</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Gao, Jiaojiao</creator><creator>Hu, Yixuan</creator><creator>Wang, Yu</creator><creator>Lin, Xiaorong</creator><creator>Hu, Kailong</creator><creator>Lin, Xi</creator><creator>Xie, Guoqiang</creator><creator>Liu, Xingjun</creator><creator>Reddy, Kolan Madhav</creator><creator>Yuan, Qunhui</creator><creator>Qiu, Hua‐Jun</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0396-1942</orcidid></search><sort><creationdate>20211201</creationdate><title>MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction</title><author>Gao, Jiaojiao ; Hu, Yixuan ; Wang, Yu ; Lin, Xiaorong ; Hu, Kailong ; Lin, Xi ; Xie, Guoqiang ; Liu, Xingjun ; Reddy, Kolan Madhav ; Yuan, Qunhui ; Qiu, Hua‐Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3504-d9e9b4592dd50742bca5e02671ace1d39e3af7220632a981552cc218d057b1b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accessibility</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Cobalt</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Mass transfer</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metal air batteries</topic><topic>Metal-organic frameworks</topic><topic>Nanoscience & Nanotechnology</topic><topic>Nanotechnology</topic><topic>ORR</topic><topic>Oxygen reduction reactions</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Pyrolysis</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>single atoms</topic><topic>structure engineering</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jiaojiao</creatorcontrib><creatorcontrib>Hu, Yixuan</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Lin, Xiaorong</creatorcontrib><creatorcontrib>Hu, Kailong</creatorcontrib><creatorcontrib>Lin, Xi</creatorcontrib><creatorcontrib>Xie, Guoqiang</creatorcontrib><creatorcontrib>Liu, Xingjun</creatorcontrib><creatorcontrib>Reddy, Kolan Madhav</creatorcontrib><creatorcontrib>Yuan, Qunhui</creatorcontrib><creatorcontrib>Qiu, Hua‐Jun</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jiaojiao</au><au>Hu, Yixuan</au><au>Wang, Yu</au><au>Lin, Xiaorong</au><au>Hu, Kailong</au><au>Lin, Xi</au><au>Xie, Guoqiang</au><au>Liu, Xingjun</au><au>Reddy, Kolan Madhav</au><au>Yuan, Qunhui</au><au>Qiu, Hua‐Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><stitle>SMALL</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>17</volume><issue>49</issue><spage>e2104684</spage><epage>n/a</epage><pages>e2104684-n/a</pages><artnum>2104684</artnum><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Single‐atom cobalt‐based CoNC are promising low‐cost electrocatalysts for oxygen reduction reaction (ORR). However, further increasing the single cobalt‐based active sites and the ORR activity remain a major challenge. Herein, an acetate (OAc) assisted metal–organic framework (MOF) structure‐engineering strategy is developed to synthesize hierarchical accordion‐like MOF with higher loading amount and better spatial isolation of Co and much higher yield when compared with widely reported polyhedron MOF. After pyrolysis, the accordion‐structured CoNC (CoNC (A)) is loaded with denser CoN4 active sites (Co: 2.88 wt%), approximately twice that of Co in the CoNC reported. The presence of OAc in MOF also induces the generation of big pores (5–50 nm) for improving the accessibility of active sites and mass transfer during catalytic reactions. Consequently, the CoNC (A) catalyst shows an admirable ORR activity with a E1/2 of 0.89 V (40 mV better than Pt/C) in alkaline electrolytes, outstanding durability, and absolute tolerance to methanol in both alkaline and acidic media. The CoNC‐based Zn‐air battery exhibits a high specific capacity (976 mAh g−1Zn), power density (158 mW cm−2), rate capability, and long‐term stability. This work demonstrates a reliable approach to construct single atom doped carbon catalysts with denser accessible active sites through MOF structure engineering.
A new accordion‐like zeolitic‐imidazole framework (ZIF) with high Co ion loading amount and dispersity is prepared by metal–organic framework (MOF) structure engineering. The acetate (OAc) plays an important role in stabilization of more Co ions and formation of large pores during carbonization. The obtained CoNC (A) contains high density of accessible single atom Co‐based active sites and exhibits greatly enhanced oxygen reduction reaction (ORR) activity.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>34738730</pmid><doi>10.1002/smll.202104684</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0396-1942</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2021-12, Vol.17 (49), p.e2104684-n/a, Article 2104684 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2594297776 |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Accessibility Catalysts Chemical synthesis Chemistry Chemistry, Multidisciplinary Chemistry, Physical Cobalt Electrocatalysts Electrolytes Mass transfer Materials Science Materials Science, Multidisciplinary Metal air batteries Metal-organic frameworks Nanoscience & Nanotechnology Nanotechnology ORR Oxygen reduction reactions Physical Sciences Physics Physics, Applied Physics, Condensed Matter Pyrolysis Science & Technology Science & Technology - Other Topics single atoms structure engineering Technology |
title | MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOF%20Structure%20Engineering%20to%20Synthesize%20Co%EF%A3%BFN%EF%A3%BFC%20Catalyst%20with%20Richer%20Accessible%20Active%20Sites%20for%20Enhanced%20Oxygen%20Reduction&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Gao,%20Jiaojiao&rft.date=2021-12-01&rft.volume=17&rft.issue=49&rft.spage=e2104684&rft.epage=n/a&rft.pages=e2104684-n/a&rft.artnum=2104684&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202104684&rft_dat=%3Cproquest_webof%3E2594297776%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608004413&rft_id=info:pmid/34738730&rfr_iscdi=true |