MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction

Single‐atom cobalt‐based CoNC are promising low‐cost electrocatalysts for oxygen reduction reaction (ORR). However, further increasing the single cobalt‐based active sites and the ORR activity remain a major challenge. Herein, an acetate (OAc) assisted metal–organic framework (MOF) structure‐engin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-12, Vol.17 (49), p.e2104684-n/a, Article 2104684
Hauptverfasser: Gao, Jiaojiao, Hu, Yixuan, Wang, Yu, Lin, Xiaorong, Hu, Kailong, Lin, Xi, Xie, Guoqiang, Liu, Xingjun, Reddy, Kolan Madhav, Yuan, Qunhui, Qiu, Hua‐Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 49
container_start_page e2104684
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 17
creator Gao, Jiaojiao
Hu, Yixuan
Wang, Yu
Lin, Xiaorong
Hu, Kailong
Lin, Xi
Xie, Guoqiang
Liu, Xingjun
Reddy, Kolan Madhav
Yuan, Qunhui
Qiu, Hua‐Jun
description Single‐atom cobalt‐based CoNC are promising low‐cost electrocatalysts for oxygen reduction reaction (ORR). However, further increasing the single cobalt‐based active sites and the ORR activity remain a major challenge. Herein, an acetate (OAc) assisted metal–organic framework (MOF) structure‐engineering strategy is developed to synthesize hierarchical accordion‐like MOF with higher loading amount and better spatial isolation of Co and much higher yield when compared with widely reported polyhedron MOF. After pyrolysis, the accordion‐structured CoNC (CoNC (A)) is loaded with denser CoN4 active sites (Co: 2.88 wt%), approximately twice that of Co in the CoNC reported. The presence of OAc in MOF also induces the generation of big pores (5–50 nm) for improving the accessibility of active sites and mass transfer during catalytic reactions. Consequently, the CoNC (A) catalyst shows an admirable ORR activity with a E1/2 of 0.89 V (40 mV better than Pt/C) in alkaline electrolytes, outstanding durability, and absolute tolerance to methanol in both alkaline and acidic media. The CoNC‐based Zn‐air battery exhibits a high specific capacity (976 mAh g−1Zn), power density (158 mW cm−2), rate capability, and long‐term stability. This work demonstrates a reliable approach to construct single atom doped carbon catalysts with denser accessible active sites through MOF structure engineering. A new accordion‐like zeolitic‐imidazole framework (ZIF) with high Co ion loading amount and dispersity is prepared by metal–organic framework (MOF) structure engineering. The acetate (OAc) plays an important role in stabilization of more Co ions and formation of large pores during carbonization. The obtained CoNC (A) contains high density of accessible single atom Co‐based active sites and exhibits greatly enhanced oxygen reduction reaction (ORR) activity.
doi_str_mv 10.1002/smll.202104684
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2594297776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594297776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3504-d9e9b4592dd50742bca5e02671ace1d39e3af7220632a981552cc218d057b1b43</originalsourceid><addsrcrecordid>eNqNkc1uEzEUhUcIREthy9oSGySUcP0z4_GyGrWAlBKpgfXI47mTuJrYxfa0BImn4UF4JF4BR6mCxAYWls_iO9fH9xTFSwpzCsDexu04zhkwCqKqxaPilFaUz6qaqcdHTeGkeBbjDQCnTMinxQkXkteSw2nx_Wp5SVYpTCZNAcmFW1uHGKxbk-TJaufSBqP9hqTxv378_JhPQxqd9LiLidzbtCHX1mwwkHNjMEbbjZhlsndIVjZhJIMPeepGO4M9WX7drdGRa-zze9a758WTQY8RXzzcZ8Xny4tPzfvZYvnuQ3O-mBlegpj1ClUnSsX6vgQpWGd0icAqSbVB2nOFXA-SMag406qmZcmMYbTuoZQd7QQ_K14f5t4G_2XCmNqtjQbHUTv0U2xZqQRTUsoqo6_-Qm_8FFxO17IKagAhKM_U_ECZ4GMMOLS3wW512LUU2n0x7b6Y9lhMNrw5GO6x80M0FvNCjiYAkDR_UKqsgGa6_n-6sUnvl9n4yaVsVQ9WO-LuH7Ha1dVi8Sfkb1nNs0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608004413</pqid></control><display><type>article</type><title>MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Gao, Jiaojiao ; Hu, Yixuan ; Wang, Yu ; Lin, Xiaorong ; Hu, Kailong ; Lin, Xi ; Xie, Guoqiang ; Liu, Xingjun ; Reddy, Kolan Madhav ; Yuan, Qunhui ; Qiu, Hua‐Jun</creator><creatorcontrib>Gao, Jiaojiao ; Hu, Yixuan ; Wang, Yu ; Lin, Xiaorong ; Hu, Kailong ; Lin, Xi ; Xie, Guoqiang ; Liu, Xingjun ; Reddy, Kolan Madhav ; Yuan, Qunhui ; Qiu, Hua‐Jun</creatorcontrib><description>Single‐atom cobalt‐based CoNC are promising low‐cost electrocatalysts for oxygen reduction reaction (ORR). However, further increasing the single cobalt‐based active sites and the ORR activity remain a major challenge. Herein, an acetate (OAc) assisted metal–organic framework (MOF) structure‐engineering strategy is developed to synthesize hierarchical accordion‐like MOF with higher loading amount and better spatial isolation of Co and much higher yield when compared with widely reported polyhedron MOF. After pyrolysis, the accordion‐structured CoNC (CoNC (A)) is loaded with denser CoN4 active sites (Co: 2.88 wt%), approximately twice that of Co in the CoNC reported. The presence of OAc in MOF also induces the generation of big pores (5–50 nm) for improving the accessibility of active sites and mass transfer during catalytic reactions. Consequently, the CoNC (A) catalyst shows an admirable ORR activity with a E1/2 of 0.89 V (40 mV better than Pt/C) in alkaline electrolytes, outstanding durability, and absolute tolerance to methanol in both alkaline and acidic media. The CoNC‐based Zn‐air battery exhibits a high specific capacity (976 mAh g−1Zn), power density (158 mW cm−2), rate capability, and long‐term stability. This work demonstrates a reliable approach to construct single atom doped carbon catalysts with denser accessible active sites through MOF structure engineering. A new accordion‐like zeolitic‐imidazole framework (ZIF) with high Co ion loading amount and dispersity is prepared by metal–organic framework (MOF) structure engineering. The acetate (OAc) plays an important role in stabilization of more Co ions and formation of large pores during carbonization. The obtained CoNC (A) contains high density of accessible single atom Co‐based active sites and exhibits greatly enhanced oxygen reduction reaction (ORR) activity.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202104684</identifier><identifier>PMID: 34738730</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Accessibility ; Catalysts ; Chemical synthesis ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Cobalt ; Electrocatalysts ; Electrolytes ; Mass transfer ; Materials Science ; Materials Science, Multidisciplinary ; Metal air batteries ; Metal-organic frameworks ; Nanoscience &amp; Nanotechnology ; Nanotechnology ; ORR ; Oxygen reduction reactions ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Pyrolysis ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; single atoms ; structure engineering ; Technology</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-12, Vol.17 (49), p.e2104684-n/a, Article 2104684</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>112</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000714597900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3504-d9e9b4592dd50742bca5e02671ace1d39e3af7220632a981552cc218d057b1b43</citedby><cites>FETCH-LOGICAL-c3504-d9e9b4592dd50742bca5e02671ace1d39e3af7220632a981552cc218d057b1b43</cites><orcidid>0000-0003-0396-1942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202104684$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202104684$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,39267,45583,45584</link.rule.ids></links><search><creatorcontrib>Gao, Jiaojiao</creatorcontrib><creatorcontrib>Hu, Yixuan</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Lin, Xiaorong</creatorcontrib><creatorcontrib>Hu, Kailong</creatorcontrib><creatorcontrib>Lin, Xi</creatorcontrib><creatorcontrib>Xie, Guoqiang</creatorcontrib><creatorcontrib>Liu, Xingjun</creatorcontrib><creatorcontrib>Reddy, Kolan Madhav</creatorcontrib><creatorcontrib>Yuan, Qunhui</creatorcontrib><creatorcontrib>Qiu, Hua‐Jun</creatorcontrib><title>MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>SMALL</addtitle><description>Single‐atom cobalt‐based CoNC are promising low‐cost electrocatalysts for oxygen reduction reaction (ORR). However, further increasing the single cobalt‐based active sites and the ORR activity remain a major challenge. Herein, an acetate (OAc) assisted metal–organic framework (MOF) structure‐engineering strategy is developed to synthesize hierarchical accordion‐like MOF with higher loading amount and better spatial isolation of Co and much higher yield when compared with widely reported polyhedron MOF. After pyrolysis, the accordion‐structured CoNC (CoNC (A)) is loaded with denser CoN4 active sites (Co: 2.88 wt%), approximately twice that of Co in the CoNC reported. The presence of OAc in MOF also induces the generation of big pores (5–50 nm) for improving the accessibility of active sites and mass transfer during catalytic reactions. Consequently, the CoNC (A) catalyst shows an admirable ORR activity with a E1/2 of 0.89 V (40 mV better than Pt/C) in alkaline electrolytes, outstanding durability, and absolute tolerance to methanol in both alkaline and acidic media. The CoNC‐based Zn‐air battery exhibits a high specific capacity (976 mAh g−1Zn), power density (158 mW cm−2), rate capability, and long‐term stability. This work demonstrates a reliable approach to construct single atom doped carbon catalysts with denser accessible active sites through MOF structure engineering. A new accordion‐like zeolitic‐imidazole framework (ZIF) with high Co ion loading amount and dispersity is prepared by metal–organic framework (MOF) structure engineering. The acetate (OAc) plays an important role in stabilization of more Co ions and formation of large pores during carbonization. The obtained CoNC (A) contains high density of accessible single atom Co‐based active sites and exhibits greatly enhanced oxygen reduction reaction (ORR) activity.</description><subject>Accessibility</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Cobalt</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Mass transfer</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metal air batteries</subject><subject>Metal-organic frameworks</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Nanotechnology</subject><subject>ORR</subject><subject>Oxygen reduction reactions</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Pyrolysis</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>single atoms</subject><subject>structure engineering</subject><subject>Technology</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkc1uEzEUhUcIREthy9oSGySUcP0z4_GyGrWAlBKpgfXI47mTuJrYxfa0BImn4UF4JF4BR6mCxAYWls_iO9fH9xTFSwpzCsDexu04zhkwCqKqxaPilFaUz6qaqcdHTeGkeBbjDQCnTMinxQkXkteSw2nx_Wp5SVYpTCZNAcmFW1uHGKxbk-TJaufSBqP9hqTxv378_JhPQxqd9LiLidzbtCHX1mwwkHNjMEbbjZhlsndIVjZhJIMPeepGO4M9WX7drdGRa-zze9a758WTQY8RXzzcZ8Xny4tPzfvZYvnuQ3O-mBlegpj1ClUnSsX6vgQpWGd0icAqSbVB2nOFXA-SMag406qmZcmMYbTuoZQd7QQ_K14f5t4G_2XCmNqtjQbHUTv0U2xZqQRTUsoqo6_-Qm_8FFxO17IKagAhKM_U_ECZ4GMMOLS3wW512LUU2n0x7b6Y9lhMNrw5GO6x80M0FvNCjiYAkDR_UKqsgGa6_n-6sUnvl9n4yaVsVQ9WO-LuH7Ha1dVi8Sfkb1nNs0I</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Gao, Jiaojiao</creator><creator>Hu, Yixuan</creator><creator>Wang, Yu</creator><creator>Lin, Xiaorong</creator><creator>Hu, Kailong</creator><creator>Lin, Xi</creator><creator>Xie, Guoqiang</creator><creator>Liu, Xingjun</creator><creator>Reddy, Kolan Madhav</creator><creator>Yuan, Qunhui</creator><creator>Qiu, Hua‐Jun</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0396-1942</orcidid></search><sort><creationdate>20211201</creationdate><title>MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction</title><author>Gao, Jiaojiao ; Hu, Yixuan ; Wang, Yu ; Lin, Xiaorong ; Hu, Kailong ; Lin, Xi ; Xie, Guoqiang ; Liu, Xingjun ; Reddy, Kolan Madhav ; Yuan, Qunhui ; Qiu, Hua‐Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3504-d9e9b4592dd50742bca5e02671ace1d39e3af7220632a981552cc218d057b1b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accessibility</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Cobalt</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Mass transfer</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metal air batteries</topic><topic>Metal-organic frameworks</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Nanotechnology</topic><topic>ORR</topic><topic>Oxygen reduction reactions</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Pyrolysis</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>single atoms</topic><topic>structure engineering</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jiaojiao</creatorcontrib><creatorcontrib>Hu, Yixuan</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Lin, Xiaorong</creatorcontrib><creatorcontrib>Hu, Kailong</creatorcontrib><creatorcontrib>Lin, Xi</creatorcontrib><creatorcontrib>Xie, Guoqiang</creatorcontrib><creatorcontrib>Liu, Xingjun</creatorcontrib><creatorcontrib>Reddy, Kolan Madhav</creatorcontrib><creatorcontrib>Yuan, Qunhui</creatorcontrib><creatorcontrib>Qiu, Hua‐Jun</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jiaojiao</au><au>Hu, Yixuan</au><au>Wang, Yu</au><au>Lin, Xiaorong</au><au>Hu, Kailong</au><au>Lin, Xi</au><au>Xie, Guoqiang</au><au>Liu, Xingjun</au><au>Reddy, Kolan Madhav</au><au>Yuan, Qunhui</au><au>Qiu, Hua‐Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><stitle>SMALL</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>17</volume><issue>49</issue><spage>e2104684</spage><epage>n/a</epage><pages>e2104684-n/a</pages><artnum>2104684</artnum><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Single‐atom cobalt‐based CoNC are promising low‐cost electrocatalysts for oxygen reduction reaction (ORR). However, further increasing the single cobalt‐based active sites and the ORR activity remain a major challenge. Herein, an acetate (OAc) assisted metal–organic framework (MOF) structure‐engineering strategy is developed to synthesize hierarchical accordion‐like MOF with higher loading amount and better spatial isolation of Co and much higher yield when compared with widely reported polyhedron MOF. After pyrolysis, the accordion‐structured CoNC (CoNC (A)) is loaded with denser CoN4 active sites (Co: 2.88 wt%), approximately twice that of Co in the CoNC reported. The presence of OAc in MOF also induces the generation of big pores (5–50 nm) for improving the accessibility of active sites and mass transfer during catalytic reactions. Consequently, the CoNC (A) catalyst shows an admirable ORR activity with a E1/2 of 0.89 V (40 mV better than Pt/C) in alkaline electrolytes, outstanding durability, and absolute tolerance to methanol in both alkaline and acidic media. The CoNC‐based Zn‐air battery exhibits a high specific capacity (976 mAh g−1Zn), power density (158 mW cm−2), rate capability, and long‐term stability. This work demonstrates a reliable approach to construct single atom doped carbon catalysts with denser accessible active sites through MOF structure engineering. A new accordion‐like zeolitic‐imidazole framework (ZIF) with high Co ion loading amount and dispersity is prepared by metal–organic framework (MOF) structure engineering. The acetate (OAc) plays an important role in stabilization of more Co ions and formation of large pores during carbonization. The obtained CoNC (A) contains high density of accessible single atom Co‐based active sites and exhibits greatly enhanced oxygen reduction reaction (ORR) activity.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>34738730</pmid><doi>10.1002/smll.202104684</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0396-1942</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2021-12, Vol.17 (49), p.e2104684-n/a, Article 2104684
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2594297776
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Accessibility
Catalysts
Chemical synthesis
Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
Cobalt
Electrocatalysts
Electrolytes
Mass transfer
Materials Science
Materials Science, Multidisciplinary
Metal air batteries
Metal-organic frameworks
Nanoscience & Nanotechnology
Nanotechnology
ORR
Oxygen reduction reactions
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Pyrolysis
Science & Technology
Science & Technology - Other Topics
single atoms
structure engineering
Technology
title MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOF%20Structure%20Engineering%20to%20Synthesize%20Co%EF%A3%BFN%EF%A3%BFC%20Catalyst%20with%20Richer%20Accessible%20Active%20Sites%20for%20Enhanced%20Oxygen%20Reduction&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Gao,%20Jiaojiao&rft.date=2021-12-01&rft.volume=17&rft.issue=49&rft.spage=e2104684&rft.epage=n/a&rft.pages=e2104684-n/a&rft.artnum=2104684&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202104684&rft_dat=%3Cproquest_webof%3E2594297776%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608004413&rft_id=info:pmid/34738730&rfr_iscdi=true