Biodegradable shape memory alloys: Progress and prospects

Shape memory alloys (SMAs) have a wide range of potential novel medical applications due to their superelastic properties and ability to restore and retain a ‘memorised’ shape. However, most SMAs are permanent and do not degrade in the body when used in implantable devices. The use of non-degrading...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2021-12, Vol.279, p.121215-121215, Article 121215
Hauptverfasser: Wang, Yuan, Venezuela, Jeffrey, Dargusch, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121215
container_issue
container_start_page 121215
container_title Biomaterials
container_volume 279
creator Wang, Yuan
Venezuela, Jeffrey
Dargusch, Matthew
description Shape memory alloys (SMAs) have a wide range of potential novel medical applications due to their superelastic properties and ability to restore and retain a ‘memorised’ shape. However, most SMAs are permanent and do not degrade in the body when used in implantable devices. The use of non-degrading metals may lead to the requirement for secondary removal surgery and this in turn may introduce both short and long-term health risks, or additional waste disposal requirements. Biodegradable SMAs can effectively eliminate these issues by gradually degrading inside the human body while providing the necessary support for healing purposes, therefore significantly alleviating patient discomfort and improving healing efficiency. This paper reviews the current progress in biodegradable SMAs from the perspective of biodegradability, mechanical properties, and biocompatibility. By providing insights into the status of SMAs and biodegradation mechanisms, the prospects for Mg- and Fe-based biodegradable SMAs to advance biodegradable SMA-based medical devices are explored. Finally, the remaining challenges and potential solutions in the biodegradable SMAs area are discussed, providing suggestions and research frameworks for future studies on this topic. [Display omitted]
doi_str_mv 10.1016/j.biomaterials.2021.121215
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2594294129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014296122100572X</els_id><sourcerecordid>2594294129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-79de3fe1ddf9f7e239703feae1c710187bcef301a8f2b9610d4edee84fe74a953</originalsourceid><addsrcrecordid>eNqNkE9LAzEQxYMotla_giyevOyaZLPNxpvWv1DQg55DNpnUlN2mJluh396UreJR5jAMvJn35ofQBcEFwWR6tSwa5zvVQ3CqjQXFlBSEpqoO0JjUvM4rgatDNMaE0VxMCR2hkxiXOM2Y0WM0Khkvp4SxMRK3zhtYBGVU00IWP9Qasg46H7aZalu_jdfZa_CLADFmamWydfBxDbqPp-jIJns42_cJen-4f5s95fOXx-fZzTzXZY37nAsDpQVijBWWAy0Fx2lWQDRP39S80WBLTFRtaZOyYsPAANTMAmdKVOUEXQ53k_PnBmIvOxc1tK1agd9ESSvBqGCEiiS9HqQ6hYwBrFwH16mwlQTLHTq5lH_RyR06OaBLy-d7n03Tgfld_WGVBHeDANK3Xw6CjNrBSoNxIQGRxrv_-HwDaTKHAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594294129</pqid></control><display><type>article</type><title>Biodegradable shape memory alloys: Progress and prospects</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Yuan ; Venezuela, Jeffrey ; Dargusch, Matthew</creator><creatorcontrib>Wang, Yuan ; Venezuela, Jeffrey ; Dargusch, Matthew</creatorcontrib><description>Shape memory alloys (SMAs) have a wide range of potential novel medical applications due to their superelastic properties and ability to restore and retain a ‘memorised’ shape. However, most SMAs are permanent and do not degrade in the body when used in implantable devices. The use of non-degrading metals may lead to the requirement for secondary removal surgery and this in turn may introduce both short and long-term health risks, or additional waste disposal requirements. Biodegradable SMAs can effectively eliminate these issues by gradually degrading inside the human body while providing the necessary support for healing purposes, therefore significantly alleviating patient discomfort and improving healing efficiency. This paper reviews the current progress in biodegradable SMAs from the perspective of biodegradability, mechanical properties, and biocompatibility. By providing insights into the status of SMAs and biodegradation mechanisms, the prospects for Mg- and Fe-based biodegradable SMAs to advance biodegradable SMA-based medical devices are explored. Finally, the remaining challenges and potential solutions in the biodegradable SMAs area are discussed, providing suggestions and research frameworks for future studies on this topic. [Display omitted]</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2021.121215</identifier><identifier>PMID: 34736144</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Alloys ; Biocompatible Materials ; Biodegradable ; Biomedical implants ; Humans ; Metals ; Prostheses and Implants ; Shape memory alloy ; Shape Memory Alloys</subject><ispartof>Biomaterials, 2021-12, Vol.279, p.121215-121215, Article 121215</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-79de3fe1ddf9f7e239703feae1c710187bcef301a8f2b9610d4edee84fe74a953</citedby><cites>FETCH-LOGICAL-c380t-79de3fe1ddf9f7e239703feae1c710187bcef301a8f2b9610d4edee84fe74a953</cites><orcidid>0000-0003-4336-5811 ; 0000-0001-9099-2346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014296122100572X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34736144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Venezuela, Jeffrey</creatorcontrib><creatorcontrib>Dargusch, Matthew</creatorcontrib><title>Biodegradable shape memory alloys: Progress and prospects</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Shape memory alloys (SMAs) have a wide range of potential novel medical applications due to their superelastic properties and ability to restore and retain a ‘memorised’ shape. However, most SMAs are permanent and do not degrade in the body when used in implantable devices. The use of non-degrading metals may lead to the requirement for secondary removal surgery and this in turn may introduce both short and long-term health risks, or additional waste disposal requirements. Biodegradable SMAs can effectively eliminate these issues by gradually degrading inside the human body while providing the necessary support for healing purposes, therefore significantly alleviating patient discomfort and improving healing efficiency. This paper reviews the current progress in biodegradable SMAs from the perspective of biodegradability, mechanical properties, and biocompatibility. By providing insights into the status of SMAs and biodegradation mechanisms, the prospects for Mg- and Fe-based biodegradable SMAs to advance biodegradable SMA-based medical devices are explored. Finally, the remaining challenges and potential solutions in the biodegradable SMAs area are discussed, providing suggestions and research frameworks for future studies on this topic. [Display omitted]</description><subject>Alloys</subject><subject>Biocompatible Materials</subject><subject>Biodegradable</subject><subject>Biomedical implants</subject><subject>Humans</subject><subject>Metals</subject><subject>Prostheses and Implants</subject><subject>Shape memory alloy</subject><subject>Shape Memory Alloys</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE9LAzEQxYMotla_giyevOyaZLPNxpvWv1DQg55DNpnUlN2mJluh396UreJR5jAMvJn35ofQBcEFwWR6tSwa5zvVQ3CqjQXFlBSEpqoO0JjUvM4rgatDNMaE0VxMCR2hkxiXOM2Y0WM0Khkvp4SxMRK3zhtYBGVU00IWP9Qasg46H7aZalu_jdfZa_CLADFmamWydfBxDbqPp-jIJns42_cJen-4f5s95fOXx-fZzTzXZY37nAsDpQVijBWWAy0Fx2lWQDRP39S80WBLTFRtaZOyYsPAANTMAmdKVOUEXQ53k_PnBmIvOxc1tK1agd9ESSvBqGCEiiS9HqQ6hYwBrFwH16mwlQTLHTq5lH_RyR06OaBLy-d7n03Tgfld_WGVBHeDANK3Xw6CjNrBSoNxIQGRxrv_-HwDaTKHAA</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Wang, Yuan</creator><creator>Venezuela, Jeffrey</creator><creator>Dargusch, Matthew</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4336-5811</orcidid><orcidid>https://orcid.org/0000-0001-9099-2346</orcidid></search><sort><creationdate>202112</creationdate><title>Biodegradable shape memory alloys: Progress and prospects</title><author>Wang, Yuan ; Venezuela, Jeffrey ; Dargusch, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-79de3fe1ddf9f7e239703feae1c710187bcef301a8f2b9610d4edee84fe74a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Biocompatible Materials</topic><topic>Biodegradable</topic><topic>Biomedical implants</topic><topic>Humans</topic><topic>Metals</topic><topic>Prostheses and Implants</topic><topic>Shape memory alloy</topic><topic>Shape Memory Alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Venezuela, Jeffrey</creatorcontrib><creatorcontrib>Dargusch, Matthew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuan</au><au>Venezuela, Jeffrey</au><au>Dargusch, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable shape memory alloys: Progress and prospects</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2021-12</date><risdate>2021</risdate><volume>279</volume><spage>121215</spage><epage>121215</epage><pages>121215-121215</pages><artnum>121215</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Shape memory alloys (SMAs) have a wide range of potential novel medical applications due to their superelastic properties and ability to restore and retain a ‘memorised’ shape. However, most SMAs are permanent and do not degrade in the body when used in implantable devices. The use of non-degrading metals may lead to the requirement for secondary removal surgery and this in turn may introduce both short and long-term health risks, or additional waste disposal requirements. Biodegradable SMAs can effectively eliminate these issues by gradually degrading inside the human body while providing the necessary support for healing purposes, therefore significantly alleviating patient discomfort and improving healing efficiency. This paper reviews the current progress in biodegradable SMAs from the perspective of biodegradability, mechanical properties, and biocompatibility. By providing insights into the status of SMAs and biodegradation mechanisms, the prospects for Mg- and Fe-based biodegradable SMAs to advance biodegradable SMA-based medical devices are explored. Finally, the remaining challenges and potential solutions in the biodegradable SMAs area are discussed, providing suggestions and research frameworks for future studies on this topic. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>34736144</pmid><doi>10.1016/j.biomaterials.2021.121215</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4336-5811</orcidid><orcidid>https://orcid.org/0000-0001-9099-2346</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2021-12, Vol.279, p.121215-121215, Article 121215
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_2594294129
source MEDLINE; Elsevier ScienceDirect Journals
subjects Alloys
Biocompatible Materials
Biodegradable
Biomedical implants
Humans
Metals
Prostheses and Implants
Shape memory alloy
Shape Memory Alloys
title Biodegradable shape memory alloys: Progress and prospects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20shape%20memory%20alloys:%20Progress%20and%20prospects&rft.jtitle=Biomaterials&rft.au=Wang,%20Yuan&rft.date=2021-12&rft.volume=279&rft.spage=121215&rft.epage=121215&rft.pages=121215-121215&rft.artnum=121215&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2021.121215&rft_dat=%3Cproquest_cross%3E2594294129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2594294129&rft_id=info:pmid/34736144&rft_els_id=S014296122100572X&rfr_iscdi=true