Biodegradable shape memory alloys: Progress and prospects
Shape memory alloys (SMAs) have a wide range of potential novel medical applications due to their superelastic properties and ability to restore and retain a ‘memorised’ shape. However, most SMAs are permanent and do not degrade in the body when used in implantable devices. The use of non-degrading...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2021-12, Vol.279, p.121215-121215, Article 121215 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121215 |
---|---|
container_issue | |
container_start_page | 121215 |
container_title | Biomaterials |
container_volume | 279 |
creator | Wang, Yuan Venezuela, Jeffrey Dargusch, Matthew |
description | Shape memory alloys (SMAs) have a wide range of potential novel medical applications due to their superelastic properties and ability to restore and retain a ‘memorised’ shape. However, most SMAs are permanent and do not degrade in the body when used in implantable devices. The use of non-degrading metals may lead to the requirement for secondary removal surgery and this in turn may introduce both short and long-term health risks, or additional waste disposal requirements. Biodegradable SMAs can effectively eliminate these issues by gradually degrading inside the human body while providing the necessary support for healing purposes, therefore significantly alleviating patient discomfort and improving healing efficiency. This paper reviews the current progress in biodegradable SMAs from the perspective of biodegradability, mechanical properties, and biocompatibility. By providing insights into the status of SMAs and biodegradation mechanisms, the prospects for Mg- and Fe-based biodegradable SMAs to advance biodegradable SMA-based medical devices are explored. Finally, the remaining challenges and potential solutions in the biodegradable SMAs area are discussed, providing suggestions and research frameworks for future studies on this topic.
[Display omitted] |
doi_str_mv | 10.1016/j.biomaterials.2021.121215 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2594294129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014296122100572X</els_id><sourcerecordid>2594294129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-79de3fe1ddf9f7e239703feae1c710187bcef301a8f2b9610d4edee84fe74a953</originalsourceid><addsrcrecordid>eNqNkE9LAzEQxYMotla_giyevOyaZLPNxpvWv1DQg55DNpnUlN2mJluh396UreJR5jAMvJn35ofQBcEFwWR6tSwa5zvVQ3CqjQXFlBSEpqoO0JjUvM4rgatDNMaE0VxMCR2hkxiXOM2Y0WM0Khkvp4SxMRK3zhtYBGVU00IWP9Qasg46H7aZalu_jdfZa_CLADFmamWydfBxDbqPp-jIJns42_cJen-4f5s95fOXx-fZzTzXZY37nAsDpQVijBWWAy0Fx2lWQDRP39S80WBLTFRtaZOyYsPAANTMAmdKVOUEXQ53k_PnBmIvOxc1tK1agd9ESSvBqGCEiiS9HqQ6hYwBrFwH16mwlQTLHTq5lH_RyR06OaBLy-d7n03Tgfld_WGVBHeDANK3Xw6CjNrBSoNxIQGRxrv_-HwDaTKHAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594294129</pqid></control><display><type>article</type><title>Biodegradable shape memory alloys: Progress and prospects</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Yuan ; Venezuela, Jeffrey ; Dargusch, Matthew</creator><creatorcontrib>Wang, Yuan ; Venezuela, Jeffrey ; Dargusch, Matthew</creatorcontrib><description>Shape memory alloys (SMAs) have a wide range of potential novel medical applications due to their superelastic properties and ability to restore and retain a ‘memorised’ shape. However, most SMAs are permanent and do not degrade in the body when used in implantable devices. The use of non-degrading metals may lead to the requirement for secondary removal surgery and this in turn may introduce both short and long-term health risks, or additional waste disposal requirements. Biodegradable SMAs can effectively eliminate these issues by gradually degrading inside the human body while providing the necessary support for healing purposes, therefore significantly alleviating patient discomfort and improving healing efficiency. This paper reviews the current progress in biodegradable SMAs from the perspective of biodegradability, mechanical properties, and biocompatibility. By providing insights into the status of SMAs and biodegradation mechanisms, the prospects for Mg- and Fe-based biodegradable SMAs to advance biodegradable SMA-based medical devices are explored. Finally, the remaining challenges and potential solutions in the biodegradable SMAs area are discussed, providing suggestions and research frameworks for future studies on this topic.
[Display omitted]</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2021.121215</identifier><identifier>PMID: 34736144</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Alloys ; Biocompatible Materials ; Biodegradable ; Biomedical implants ; Humans ; Metals ; Prostheses and Implants ; Shape memory alloy ; Shape Memory Alloys</subject><ispartof>Biomaterials, 2021-12, Vol.279, p.121215-121215, Article 121215</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-79de3fe1ddf9f7e239703feae1c710187bcef301a8f2b9610d4edee84fe74a953</citedby><cites>FETCH-LOGICAL-c380t-79de3fe1ddf9f7e239703feae1c710187bcef301a8f2b9610d4edee84fe74a953</cites><orcidid>0000-0003-4336-5811 ; 0000-0001-9099-2346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014296122100572X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34736144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Venezuela, Jeffrey</creatorcontrib><creatorcontrib>Dargusch, Matthew</creatorcontrib><title>Biodegradable shape memory alloys: Progress and prospects</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Shape memory alloys (SMAs) have a wide range of potential novel medical applications due to their superelastic properties and ability to restore and retain a ‘memorised’ shape. However, most SMAs are permanent and do not degrade in the body when used in implantable devices. The use of non-degrading metals may lead to the requirement for secondary removal surgery and this in turn may introduce both short and long-term health risks, or additional waste disposal requirements. Biodegradable SMAs can effectively eliminate these issues by gradually degrading inside the human body while providing the necessary support for healing purposes, therefore significantly alleviating patient discomfort and improving healing efficiency. This paper reviews the current progress in biodegradable SMAs from the perspective of biodegradability, mechanical properties, and biocompatibility. By providing insights into the status of SMAs and biodegradation mechanisms, the prospects for Mg- and Fe-based biodegradable SMAs to advance biodegradable SMA-based medical devices are explored. Finally, the remaining challenges and potential solutions in the biodegradable SMAs area are discussed, providing suggestions and research frameworks for future studies on this topic.
[Display omitted]</description><subject>Alloys</subject><subject>Biocompatible Materials</subject><subject>Biodegradable</subject><subject>Biomedical implants</subject><subject>Humans</subject><subject>Metals</subject><subject>Prostheses and Implants</subject><subject>Shape memory alloy</subject><subject>Shape Memory Alloys</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE9LAzEQxYMotla_giyevOyaZLPNxpvWv1DQg55DNpnUlN2mJluh396UreJR5jAMvJn35ofQBcEFwWR6tSwa5zvVQ3CqjQXFlBSEpqoO0JjUvM4rgatDNMaE0VxMCR2hkxiXOM2Y0WM0Khkvp4SxMRK3zhtYBGVU00IWP9Qasg46H7aZalu_jdfZa_CLADFmamWydfBxDbqPp-jIJns42_cJen-4f5s95fOXx-fZzTzXZY37nAsDpQVijBWWAy0Fx2lWQDRP39S80WBLTFRtaZOyYsPAANTMAmdKVOUEXQ53k_PnBmIvOxc1tK1agd9ESSvBqGCEiiS9HqQ6hYwBrFwH16mwlQTLHTq5lH_RyR06OaBLy-d7n03Tgfld_WGVBHeDANK3Xw6CjNrBSoNxIQGRxrv_-HwDaTKHAA</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Wang, Yuan</creator><creator>Venezuela, Jeffrey</creator><creator>Dargusch, Matthew</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4336-5811</orcidid><orcidid>https://orcid.org/0000-0001-9099-2346</orcidid></search><sort><creationdate>202112</creationdate><title>Biodegradable shape memory alloys: Progress and prospects</title><author>Wang, Yuan ; Venezuela, Jeffrey ; Dargusch, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-79de3fe1ddf9f7e239703feae1c710187bcef301a8f2b9610d4edee84fe74a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Biocompatible Materials</topic><topic>Biodegradable</topic><topic>Biomedical implants</topic><topic>Humans</topic><topic>Metals</topic><topic>Prostheses and Implants</topic><topic>Shape memory alloy</topic><topic>Shape Memory Alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Venezuela, Jeffrey</creatorcontrib><creatorcontrib>Dargusch, Matthew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuan</au><au>Venezuela, Jeffrey</au><au>Dargusch, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable shape memory alloys: Progress and prospects</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2021-12</date><risdate>2021</risdate><volume>279</volume><spage>121215</spage><epage>121215</epage><pages>121215-121215</pages><artnum>121215</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Shape memory alloys (SMAs) have a wide range of potential novel medical applications due to their superelastic properties and ability to restore and retain a ‘memorised’ shape. However, most SMAs are permanent and do not degrade in the body when used in implantable devices. The use of non-degrading metals may lead to the requirement for secondary removal surgery and this in turn may introduce both short and long-term health risks, or additional waste disposal requirements. Biodegradable SMAs can effectively eliminate these issues by gradually degrading inside the human body while providing the necessary support for healing purposes, therefore significantly alleviating patient discomfort and improving healing efficiency. This paper reviews the current progress in biodegradable SMAs from the perspective of biodegradability, mechanical properties, and biocompatibility. By providing insights into the status of SMAs and biodegradation mechanisms, the prospects for Mg- and Fe-based biodegradable SMAs to advance biodegradable SMA-based medical devices are explored. Finally, the remaining challenges and potential solutions in the biodegradable SMAs area are discussed, providing suggestions and research frameworks for future studies on this topic.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>34736144</pmid><doi>10.1016/j.biomaterials.2021.121215</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4336-5811</orcidid><orcidid>https://orcid.org/0000-0001-9099-2346</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2021-12, Vol.279, p.121215-121215, Article 121215 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_2594294129 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Alloys Biocompatible Materials Biodegradable Biomedical implants Humans Metals Prostheses and Implants Shape memory alloy Shape Memory Alloys |
title | Biodegradable shape memory alloys: Progress and prospects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20shape%20memory%20alloys:%20Progress%20and%20prospects&rft.jtitle=Biomaterials&rft.au=Wang,%20Yuan&rft.date=2021-12&rft.volume=279&rft.spage=121215&rft.epage=121215&rft.pages=121215-121215&rft.artnum=121215&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2021.121215&rft_dat=%3Cproquest_cross%3E2594294129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2594294129&rft_id=info:pmid/34736144&rft_els_id=S014296122100572X&rfr_iscdi=true |