Solid-Phase Extraction of Aquatic Organic Matter: Loading-Dependent Chemical Fractionation and Self-Assembly

Dissolved organic matter (DOM) is an important component in marine and freshwater environments and plays a fundamental role in global biogeochemical cycles. In the past, optical and molecular-level analytical techniques evolved and improved our mechanistic understanding about DOM fluxes. For most mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-11, Vol.55 (22), p.15495-15504
Hauptverfasser: Kong, Xianyu, Jendrossek, Thomas, Ludwichowski, Kai-Uwe, Marx, Ute, Koch, Boris P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15504
container_issue 22
container_start_page 15495
container_title Environmental science & technology
container_volume 55
creator Kong, Xianyu
Jendrossek, Thomas
Ludwichowski, Kai-Uwe
Marx, Ute
Koch, Boris P
description Dissolved organic matter (DOM) is an important component in marine and freshwater environments and plays a fundamental role in global biogeochemical cycles. In the past, optical and molecular-level analytical techniques evolved and improved our mechanistic understanding about DOM fluxes. For most molecular chemical techniques, sample desalting and enrichment is a prerequisite. Solid-phase extraction has been widely applied for concentrating and desalting DOM. The major aim of this study was to constrain the influence of sorbent loading on the composition of DOM extracts. Here, we show that increased loading resulted in reduced extraction efficiencies of dissolved organic carbon (DOC), fluorescence and absorbance, and polar organic substances. Loading-dependent optical and chemical fractionation induced by the altered adsorption characteristics of the sorbent surface (styrene divinylbenzene polymer) and increased multilayer adsorption (DOM self-assembly) can fundamentally affect biogeochemical interpretations, such as the source of organic matter. Online fluorescence monitoring of the permeate flow allowed to empirically model the extraction process and to assess the degree of variability introduced by changing the sorbent loading in the extraction procedure. Our study emphasizes that it is crucial for sample comparison to keep the relative DOC loading (DOCload [wt %]) on the sorbent always similar to avoid chemical fractionation.
doi_str_mv 10.1021/acs.est.1c04535
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2594293927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599635227</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-40a86fc8a6096553c491fdbdb60deb2a0f5070e0d85dea475ff01956a134c2813</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFbXbgNuBEl7ZyaTZNyV2qpQqVAFd-FmHm1KmrQzKdh_b_rAheDqLO73HS6HkFsKPQqM9lH5nvFNjyqIBBdnpEMFg1Ckgp6TDgDloeTx1yW58n4JAIxD2iHlrC4LHb4v0Jtg9N04VE1RV0Ftg8Fmi02hgqmbY9XmGzaNcY_BpEZdVPPwyaxNpU3VBMOFWRUKy2B80vHQgZUOZqa04cB7s8rL3TW5sFh6c3PKLvkcjz6GL-Fk-vw6HExC5Ilswggwja1KMQYZC8FVJKnVuc5j0CZnCFZAAgZ0KrTBKBHWApUiRsojxVLKu-T-2Lt29WbbjpKtCq9MWWJl6q3PmJARk1yypEXv_qDLeuuq9rs9JWMu2IHqHynlau-dsdnaFSt0u4xCtl8_a9fP9vZp_dZ4OBr7w2_lf_QPjTmHyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599635227</pqid></control><display><type>article</type><title>Solid-Phase Extraction of Aquatic Organic Matter: Loading-Dependent Chemical Fractionation and Self-Assembly</title><source>American Chemical Society Journals</source><creator>Kong, Xianyu ; Jendrossek, Thomas ; Ludwichowski, Kai-Uwe ; Marx, Ute ; Koch, Boris P</creator><creatorcontrib>Kong, Xianyu ; Jendrossek, Thomas ; Ludwichowski, Kai-Uwe ; Marx, Ute ; Koch, Boris P</creatorcontrib><description>Dissolved organic matter (DOM) is an important component in marine and freshwater environments and plays a fundamental role in global biogeochemical cycles. In the past, optical and molecular-level analytical techniques evolved and improved our mechanistic understanding about DOM fluxes. For most molecular chemical techniques, sample desalting and enrichment is a prerequisite. Solid-phase extraction has been widely applied for concentrating and desalting DOM. The major aim of this study was to constrain the influence of sorbent loading on the composition of DOM extracts. Here, we show that increased loading resulted in reduced extraction efficiencies of dissolved organic carbon (DOC), fluorescence and absorbance, and polar organic substances. Loading-dependent optical and chemical fractionation induced by the altered adsorption characteristics of the sorbent surface (styrene divinylbenzene polymer) and increased multilayer adsorption (DOM self-assembly) can fundamentally affect biogeochemical interpretations, such as the source of organic matter. Online fluorescence monitoring of the permeate flow allowed to empirically model the extraction process and to assess the degree of variability introduced by changing the sorbent loading in the extraction procedure. Our study emphasizes that it is crucial for sample comparison to keep the relative DOC loading (DOCload [wt %]) on the sorbent always similar to avoid chemical fractionation.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.1c04535</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Adsorption ; Biogeochemical cycles ; Biogeochemical Cycling ; Biogeochemistry ; Chemical fractionation ; Desalination ; Dissolved organic carbon ; Dissolved organic matter ; Divinylbenzene ; Extraction procedures ; Fluorescence ; Fractionation ; Freshwater environments ; Multilayers ; Polymers ; Self-assembly ; Solid phases ; Sorbents ; Styrene</subject><ispartof>Environmental science &amp; technology, 2021-11, Vol.55 (22), p.15495-15504</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 16, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-40a86fc8a6096553c491fdbdb60deb2a0f5070e0d85dea475ff01956a134c2813</citedby><cites>FETCH-LOGICAL-a379t-40a86fc8a6096553c491fdbdb60deb2a0f5070e0d85dea475ff01956a134c2813</cites><orcidid>0000-0002-7366-5180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.1c04535$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.1c04535$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Kong, Xianyu</creatorcontrib><creatorcontrib>Jendrossek, Thomas</creatorcontrib><creatorcontrib>Ludwichowski, Kai-Uwe</creatorcontrib><creatorcontrib>Marx, Ute</creatorcontrib><creatorcontrib>Koch, Boris P</creatorcontrib><title>Solid-Phase Extraction of Aquatic Organic Matter: Loading-Dependent Chemical Fractionation and Self-Assembly</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Dissolved organic matter (DOM) is an important component in marine and freshwater environments and plays a fundamental role in global biogeochemical cycles. In the past, optical and molecular-level analytical techniques evolved and improved our mechanistic understanding about DOM fluxes. For most molecular chemical techniques, sample desalting and enrichment is a prerequisite. Solid-phase extraction has been widely applied for concentrating and desalting DOM. The major aim of this study was to constrain the influence of sorbent loading on the composition of DOM extracts. Here, we show that increased loading resulted in reduced extraction efficiencies of dissolved organic carbon (DOC), fluorescence and absorbance, and polar organic substances. Loading-dependent optical and chemical fractionation induced by the altered adsorption characteristics of the sorbent surface (styrene divinylbenzene polymer) and increased multilayer adsorption (DOM self-assembly) can fundamentally affect biogeochemical interpretations, such as the source of organic matter. Online fluorescence monitoring of the permeate flow allowed to empirically model the extraction process and to assess the degree of variability introduced by changing the sorbent loading in the extraction procedure. Our study emphasizes that it is crucial for sample comparison to keep the relative DOC loading (DOCload [wt %]) on the sorbent always similar to avoid chemical fractionation.</description><subject>Adsorption</subject><subject>Biogeochemical cycles</subject><subject>Biogeochemical Cycling</subject><subject>Biogeochemistry</subject><subject>Chemical fractionation</subject><subject>Desalination</subject><subject>Dissolved organic carbon</subject><subject>Dissolved organic matter</subject><subject>Divinylbenzene</subject><subject>Extraction procedures</subject><subject>Fluorescence</subject><subject>Fractionation</subject><subject>Freshwater environments</subject><subject>Multilayers</subject><subject>Polymers</subject><subject>Self-assembly</subject><subject>Solid phases</subject><subject>Sorbents</subject><subject>Styrene</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFbXbgNuBEl7ZyaTZNyV2qpQqVAFd-FmHm1KmrQzKdh_b_rAheDqLO73HS6HkFsKPQqM9lH5nvFNjyqIBBdnpEMFg1Ckgp6TDgDloeTx1yW58n4JAIxD2iHlrC4LHb4v0Jtg9N04VE1RV0Ftg8Fmi02hgqmbY9XmGzaNcY_BpEZdVPPwyaxNpU3VBMOFWRUKy2B80vHQgZUOZqa04cB7s8rL3TW5sFh6c3PKLvkcjz6GL-Fk-vw6HExC5Ilswggwja1KMQYZC8FVJKnVuc5j0CZnCFZAAgZ0KrTBKBHWApUiRsojxVLKu-T-2Lt29WbbjpKtCq9MWWJl6q3PmJARk1yypEXv_qDLeuuq9rs9JWMu2IHqHynlau-dsdnaFSt0u4xCtl8_a9fP9vZp_dZ4OBr7w2_lf_QPjTmHyg</recordid><startdate>20211116</startdate><enddate>20211116</enddate><creator>Kong, Xianyu</creator><creator>Jendrossek, Thomas</creator><creator>Ludwichowski, Kai-Uwe</creator><creator>Marx, Ute</creator><creator>Koch, Boris P</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7366-5180</orcidid></search><sort><creationdate>20211116</creationdate><title>Solid-Phase Extraction of Aquatic Organic Matter: Loading-Dependent Chemical Fractionation and Self-Assembly</title><author>Kong, Xianyu ; Jendrossek, Thomas ; Ludwichowski, Kai-Uwe ; Marx, Ute ; Koch, Boris P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-40a86fc8a6096553c491fdbdb60deb2a0f5070e0d85dea475ff01956a134c2813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Biogeochemical cycles</topic><topic>Biogeochemical Cycling</topic><topic>Biogeochemistry</topic><topic>Chemical fractionation</topic><topic>Desalination</topic><topic>Dissolved organic carbon</topic><topic>Dissolved organic matter</topic><topic>Divinylbenzene</topic><topic>Extraction procedures</topic><topic>Fluorescence</topic><topic>Fractionation</topic><topic>Freshwater environments</topic><topic>Multilayers</topic><topic>Polymers</topic><topic>Self-assembly</topic><topic>Solid phases</topic><topic>Sorbents</topic><topic>Styrene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Xianyu</creatorcontrib><creatorcontrib>Jendrossek, Thomas</creatorcontrib><creatorcontrib>Ludwichowski, Kai-Uwe</creatorcontrib><creatorcontrib>Marx, Ute</creatorcontrib><creatorcontrib>Koch, Boris P</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Xianyu</au><au>Jendrossek, Thomas</au><au>Ludwichowski, Kai-Uwe</au><au>Marx, Ute</au><au>Koch, Boris P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-Phase Extraction of Aquatic Organic Matter: Loading-Dependent Chemical Fractionation and Self-Assembly</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2021-11-16</date><risdate>2021</risdate><volume>55</volume><issue>22</issue><spage>15495</spage><epage>15504</epage><pages>15495-15504</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Dissolved organic matter (DOM) is an important component in marine and freshwater environments and plays a fundamental role in global biogeochemical cycles. In the past, optical and molecular-level analytical techniques evolved and improved our mechanistic understanding about DOM fluxes. For most molecular chemical techniques, sample desalting and enrichment is a prerequisite. Solid-phase extraction has been widely applied for concentrating and desalting DOM. The major aim of this study was to constrain the influence of sorbent loading on the composition of DOM extracts. Here, we show that increased loading resulted in reduced extraction efficiencies of dissolved organic carbon (DOC), fluorescence and absorbance, and polar organic substances. Loading-dependent optical and chemical fractionation induced by the altered adsorption characteristics of the sorbent surface (styrene divinylbenzene polymer) and increased multilayer adsorption (DOM self-assembly) can fundamentally affect biogeochemical interpretations, such as the source of organic matter. Online fluorescence monitoring of the permeate flow allowed to empirically model the extraction process and to assess the degree of variability introduced by changing the sorbent loading in the extraction procedure. Our study emphasizes that it is crucial for sample comparison to keep the relative DOC loading (DOCload [wt %]) on the sorbent always similar to avoid chemical fractionation.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.1c04535</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7366-5180</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2021-11, Vol.55 (22), p.15495-15504
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2594293927
source American Chemical Society Journals
subjects Adsorption
Biogeochemical cycles
Biogeochemical Cycling
Biogeochemistry
Chemical fractionation
Desalination
Dissolved organic carbon
Dissolved organic matter
Divinylbenzene
Extraction procedures
Fluorescence
Fractionation
Freshwater environments
Multilayers
Polymers
Self-assembly
Solid phases
Sorbents
Styrene
title Solid-Phase Extraction of Aquatic Organic Matter: Loading-Dependent Chemical Fractionation and Self-Assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-Phase%20Extraction%20of%20Aquatic%20Organic%20Matter:%20Loading-Dependent%20Chemical%20Fractionation%20and%20Self-Assembly&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Kong,%20Xianyu&rft.date=2021-11-16&rft.volume=55&rft.issue=22&rft.spage=15495&rft.epage=15504&rft.pages=15495-15504&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.1c04535&rft_dat=%3Cproquest_cross%3E2599635227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599635227&rft_id=info:pmid/&rfr_iscdi=true