Illicit drugs street samples and their cutting agents. The result of the GC-MS based profiling define the guidelines for sensors development
In this work, we have focused on the profiling of 5647 street samples covering marijuana, common and new recreational illicit drugs. All samples were analyzed using gas chromatography-mass spectrometry (GC-MS) technique. In total we have identified 53 illicit drugs with Δ-9-tetrahydrocannabinol (THC...
Gespeichert in:
Veröffentlicht in: | Talanta (Oxford) 2022-01, Vol.237, p.122904-122904, Article 122904 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122904 |
---|---|
container_issue | |
container_start_page | 122904 |
container_title | Talanta (Oxford) |
container_volume | 237 |
creator | Żubrycka, Anna Kwaśnica, Andrzej Haczkiewicz, Monika Sipa, Karolina Rudnicki, Konrad Skrzypek, Sławomira Poltorak, Lukasz |
description | In this work, we have focused on the profiling of 5647 street samples covering marijuana, common and new recreational illicit drugs. All samples were analyzed using gas chromatography-mass spectrometry (GC-MS) technique. In total we have identified 53 illicit drugs with Δ-9-tetrahydrocannabinol (THC), amphetamine, N-ethylhexedrone, 3,4-methylenedioxy methamphetamine (MDMA), 4-chloromethcathinone (4-CMC), α-pyrrolidinoisohexaphenone (α-PHiP), cocaine, and 4-chloroethcathinone (4-CEC) being most commonly found and making 38.5, 17.8, 15.5, 8.0, 3.5, 2.7, 2.1, and 2.0% of the total studied pool, respectively. Except for methadone, all analyzed street samples were spiked with at least one cutting agent. Caffeine was the most frequently found adulterating addition present in around 33% (excluding marijuana) of the analyzed samples. Other identified cutting agents make an impressive group of more than 160 compounds. Finally, we have tabulated, illustrated, and discussed presented data in a view of smart and portable sensors development.
[Display omitted]
•5647 illicit drugs street samples were analyzed.•53 illicit drugs were identified.•Δ-9-THC and amphetamine was the most commonly found.•Illicit drugs street samples profiles are presented.•Guidelines for the illicit drugs street sample sensors development are given. |
doi_str_mv | 10.1016/j.talanta.2021.122904 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2594293060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039914021008262</els_id><sourcerecordid>2594293060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-16384ff069d543f9bb3b0fe4f30d30e23c25e6d4d5b98515b38ddcb8f5f9a01e3</originalsourceid><addsrcrecordid>eNqFkMFq3DAQhkVpoNu0j1DQsRc7I8l2rFMpS5sEUnpoehayNNpo0dpbjRzoO-Sho-3m3tPA8P0_Mx9jnwS0AsRwtW-LTXYutpUgRSuk1NC9YRsxXqtG9dfqLdsAKN1o0cE79p5oDwBSgdqw57uUoouF-7zuiFPJiIWTPRwTErez5-URY-ZuLSXOO253OBdq-cMj8oy0psKXcGL4zbb58YtPltDzY15CTCfeY4gz_gN2a_RYl7U3LJkTzrRkqsQTpuV4qL0f2EWwifDj67xkv79_e9jeNvc_b-62X-8bp0ZdGjGosQsBBu37TgU9TWqCgF1Q4BWgVE72OPjO95Mee9FPavTeTWPog7YgUF2yz-feeuefFamYQySHqUrEZSUje91JrWCAivZn1OWFKGMwxxwPNv81AszJvtmbV_vmZN-c7dfcl3MO6x9PEbMhF3F26GNGV4xf4n8aXgCPs5Ls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594293060</pqid></control><display><type>article</type><title>Illicit drugs street samples and their cutting agents. The result of the GC-MS based profiling define the guidelines for sensors development</title><source>Access via ScienceDirect (Elsevier)</source><creator>Żubrycka, Anna ; Kwaśnica, Andrzej ; Haczkiewicz, Monika ; Sipa, Karolina ; Rudnicki, Konrad ; Skrzypek, Sławomira ; Poltorak, Lukasz</creator><creatorcontrib>Żubrycka, Anna ; Kwaśnica, Andrzej ; Haczkiewicz, Monika ; Sipa, Karolina ; Rudnicki, Konrad ; Skrzypek, Sławomira ; Poltorak, Lukasz</creatorcontrib><description>In this work, we have focused on the profiling of 5647 street samples covering marijuana, common and new recreational illicit drugs. All samples were analyzed using gas chromatography-mass spectrometry (GC-MS) technique. In total we have identified 53 illicit drugs with Δ-9-tetrahydrocannabinol (THC), amphetamine, N-ethylhexedrone, 3,4-methylenedioxy methamphetamine (MDMA), 4-chloromethcathinone (4-CMC), α-pyrrolidinoisohexaphenone (α-PHiP), cocaine, and 4-chloroethcathinone (4-CEC) being most commonly found and making 38.5, 17.8, 15.5, 8.0, 3.5, 2.7, 2.1, and 2.0% of the total studied pool, respectively. Except for methadone, all analyzed street samples were spiked with at least one cutting agent. Caffeine was the most frequently found adulterating addition present in around 33% (excluding marijuana) of the analyzed samples. Other identified cutting agents make an impressive group of more than 160 compounds. Finally, we have tabulated, illustrated, and discussed presented data in a view of smart and portable sensors development.
[Display omitted]
•5647 illicit drugs street samples were analyzed.•53 illicit drugs were identified.•Δ-9-THC and amphetamine was the most commonly found.•Illicit drugs street samples profiles are presented.•Guidelines for the illicit drugs street sample sensors development are given.</description><identifier>ISSN: 0039-9140</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2021.122904</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Amphetamine ; Cocaine ; GC-MS ; Heroin ; Narcotics ; Sensors</subject><ispartof>Talanta (Oxford), 2022-01, Vol.237, p.122904-122904, Article 122904</ispartof><rights>2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-16384ff069d543f9bb3b0fe4f30d30e23c25e6d4d5b98515b38ddcb8f5f9a01e3</citedby><cites>FETCH-LOGICAL-c389t-16384ff069d543f9bb3b0fe4f30d30e23c25e6d4d5b98515b38ddcb8f5f9a01e3</cites><orcidid>0000-0002-8799-8461 ; 0000-0002-7347-2936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.talanta.2021.122904$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Żubrycka, Anna</creatorcontrib><creatorcontrib>Kwaśnica, Andrzej</creatorcontrib><creatorcontrib>Haczkiewicz, Monika</creatorcontrib><creatorcontrib>Sipa, Karolina</creatorcontrib><creatorcontrib>Rudnicki, Konrad</creatorcontrib><creatorcontrib>Skrzypek, Sławomira</creatorcontrib><creatorcontrib>Poltorak, Lukasz</creatorcontrib><title>Illicit drugs street samples and their cutting agents. The result of the GC-MS based profiling define the guidelines for sensors development</title><title>Talanta (Oxford)</title><description>In this work, we have focused on the profiling of 5647 street samples covering marijuana, common and new recreational illicit drugs. All samples were analyzed using gas chromatography-mass spectrometry (GC-MS) technique. In total we have identified 53 illicit drugs with Δ-9-tetrahydrocannabinol (THC), amphetamine, N-ethylhexedrone, 3,4-methylenedioxy methamphetamine (MDMA), 4-chloromethcathinone (4-CMC), α-pyrrolidinoisohexaphenone (α-PHiP), cocaine, and 4-chloroethcathinone (4-CEC) being most commonly found and making 38.5, 17.8, 15.5, 8.0, 3.5, 2.7, 2.1, and 2.0% of the total studied pool, respectively. Except for methadone, all analyzed street samples were spiked with at least one cutting agent. Caffeine was the most frequently found adulterating addition present in around 33% (excluding marijuana) of the analyzed samples. Other identified cutting agents make an impressive group of more than 160 compounds. Finally, we have tabulated, illustrated, and discussed presented data in a view of smart and portable sensors development.
[Display omitted]
•5647 illicit drugs street samples were analyzed.•53 illicit drugs were identified.•Δ-9-THC and amphetamine was the most commonly found.•Illicit drugs street samples profiles are presented.•Guidelines for the illicit drugs street sample sensors development are given.</description><subject>Amphetamine</subject><subject>Cocaine</subject><subject>GC-MS</subject><subject>Heroin</subject><subject>Narcotics</subject><subject>Sensors</subject><issn>0039-9140</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMFq3DAQhkVpoNu0j1DQsRc7I8l2rFMpS5sEUnpoehayNNpo0dpbjRzoO-Sho-3m3tPA8P0_Mx9jnwS0AsRwtW-LTXYutpUgRSuk1NC9YRsxXqtG9dfqLdsAKN1o0cE79p5oDwBSgdqw57uUoouF-7zuiFPJiIWTPRwTErez5-URY-ZuLSXOO253OBdq-cMj8oy0psKXcGL4zbb58YtPltDzY15CTCfeY4gz_gN2a_RYl7U3LJkTzrRkqsQTpuV4qL0f2EWwifDj67xkv79_e9jeNvc_b-62X-8bp0ZdGjGosQsBBu37TgU9TWqCgF1Q4BWgVE72OPjO95Mee9FPavTeTWPog7YgUF2yz-feeuefFamYQySHqUrEZSUje91JrWCAivZn1OWFKGMwxxwPNv81AszJvtmbV_vmZN-c7dfcl3MO6x9PEbMhF3F26GNGV4xf4n8aXgCPs5Ls</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Żubrycka, Anna</creator><creator>Kwaśnica, Andrzej</creator><creator>Haczkiewicz, Monika</creator><creator>Sipa, Karolina</creator><creator>Rudnicki, Konrad</creator><creator>Skrzypek, Sławomira</creator><creator>Poltorak, Lukasz</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8799-8461</orcidid><orcidid>https://orcid.org/0000-0002-7347-2936</orcidid></search><sort><creationdate>20220115</creationdate><title>Illicit drugs street samples and their cutting agents. The result of the GC-MS based profiling define the guidelines for sensors development</title><author>Żubrycka, Anna ; Kwaśnica, Andrzej ; Haczkiewicz, Monika ; Sipa, Karolina ; Rudnicki, Konrad ; Skrzypek, Sławomira ; Poltorak, Lukasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-16384ff069d543f9bb3b0fe4f30d30e23c25e6d4d5b98515b38ddcb8f5f9a01e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amphetamine</topic><topic>Cocaine</topic><topic>GC-MS</topic><topic>Heroin</topic><topic>Narcotics</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Żubrycka, Anna</creatorcontrib><creatorcontrib>Kwaśnica, Andrzej</creatorcontrib><creatorcontrib>Haczkiewicz, Monika</creatorcontrib><creatorcontrib>Sipa, Karolina</creatorcontrib><creatorcontrib>Rudnicki, Konrad</creatorcontrib><creatorcontrib>Skrzypek, Sławomira</creatorcontrib><creatorcontrib>Poltorak, Lukasz</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Żubrycka, Anna</au><au>Kwaśnica, Andrzej</au><au>Haczkiewicz, Monika</au><au>Sipa, Karolina</au><au>Rudnicki, Konrad</au><au>Skrzypek, Sławomira</au><au>Poltorak, Lukasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Illicit drugs street samples and their cutting agents. The result of the GC-MS based profiling define the guidelines for sensors development</atitle><jtitle>Talanta (Oxford)</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>237</volume><spage>122904</spage><epage>122904</epage><pages>122904-122904</pages><artnum>122904</artnum><issn>0039-9140</issn><eissn>1873-3573</eissn><abstract>In this work, we have focused on the profiling of 5647 street samples covering marijuana, common and new recreational illicit drugs. All samples were analyzed using gas chromatography-mass spectrometry (GC-MS) technique. In total we have identified 53 illicit drugs with Δ-9-tetrahydrocannabinol (THC), amphetamine, N-ethylhexedrone, 3,4-methylenedioxy methamphetamine (MDMA), 4-chloromethcathinone (4-CMC), α-pyrrolidinoisohexaphenone (α-PHiP), cocaine, and 4-chloroethcathinone (4-CEC) being most commonly found and making 38.5, 17.8, 15.5, 8.0, 3.5, 2.7, 2.1, and 2.0% of the total studied pool, respectively. Except for methadone, all analyzed street samples were spiked with at least one cutting agent. Caffeine was the most frequently found adulterating addition present in around 33% (excluding marijuana) of the analyzed samples. Other identified cutting agents make an impressive group of more than 160 compounds. Finally, we have tabulated, illustrated, and discussed presented data in a view of smart and portable sensors development.
[Display omitted]
•5647 illicit drugs street samples were analyzed.•53 illicit drugs were identified.•Δ-9-THC and amphetamine was the most commonly found.•Illicit drugs street samples profiles are presented.•Guidelines for the illicit drugs street sample sensors development are given.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.talanta.2021.122904</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8799-8461</orcidid><orcidid>https://orcid.org/0000-0002-7347-2936</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-9140 |
ispartof | Talanta (Oxford), 2022-01, Vol.237, p.122904-122904, Article 122904 |
issn | 0039-9140 1873-3573 |
language | eng |
recordid | cdi_proquest_miscellaneous_2594293060 |
source | Access via ScienceDirect (Elsevier) |
subjects | Amphetamine Cocaine GC-MS Heroin Narcotics Sensors |
title | Illicit drugs street samples and their cutting agents. The result of the GC-MS based profiling define the guidelines for sensors development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Illicit%20drugs%20street%20samples%20and%20their%20cutting%20agents.%20The%20result%20of%20the%20GC-MS%20based%20profiling%20define%20the%20guidelines%20for%20sensors%20development&rft.jtitle=Talanta%20(Oxford)&rft.au=%C5%BBubrycka,%20Anna&rft.date=2022-01-15&rft.volume=237&rft.spage=122904&rft.epage=122904&rft.pages=122904-122904&rft.artnum=122904&rft.issn=0039-9140&rft.eissn=1873-3573&rft_id=info:doi/10.1016/j.talanta.2021.122904&rft_dat=%3Cproquest_cross%3E2594293060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2594293060&rft_id=info:pmid/&rft_els_id=S0039914021008262&rfr_iscdi=true |