Pharmacological intervention in young adolescents rescues synaptic physiology and behavioural deficits in Syngap1+/− mice

Haploinsufficiency in SYNGAP1 is implicated in intellectual disability (ID) and autism spectrum disorder (ASD) and affects the maturation of dendritic spines. The abnormal spine development has been suggested to cause a disbalance of excitatory and inhibitory (E/I) neurotransmission at distinct deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental brain research 2022, Vol.240 (1), p.289-309
Hauptverfasser: Verma, Vijaya, Kumar, M. J. Vijay, Sharma, Kavita, Rajaram, Sridhar, Muddashetty, Ravi, Manjithaya, Ravi, Behnisch, Thomas, Clement, James P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 309
container_issue 1
container_start_page 289
container_title Experimental brain research
container_volume 240
creator Verma, Vijaya
Kumar, M. J. Vijay
Sharma, Kavita
Rajaram, Sridhar
Muddashetty, Ravi
Manjithaya, Ravi
Behnisch, Thomas
Clement, James P.
description Haploinsufficiency in SYNGAP1 is implicated in intellectual disability (ID) and autism spectrum disorder (ASD) and affects the maturation of dendritic spines. The abnormal spine development has been suggested to cause a disbalance of excitatory and inhibitory (E/I) neurotransmission at distinct developmental periods. In addition, E/I imbalances in Syngap1 +/− mice might be due to abnormalities in K + –Cl − co-transporter function (NKCC1, KCC2), in a maner similar to the murine models of Fragile-X and Rett syndromes. To study whether an altered intracellular chloride ion concentration represents an underlying mechanism of modified function of GABAergic synapses in Dentate Gyrus Granule Cells of Syngap1 +/− recordings were performed at different developmental stages of the mice. We observed depolarised neurons at P14–15 as illustrated by decreased Cl − reversal potential in Syngap1 +/− mice. The KCC2 expression was decreased compared to Wild-type (WT) mice at P14–15. The GSK-3β inhibitor, 6-bromoindirubin-3ʹ-oxime (6BIO) that crosses the blood–brain barrier, was tested to restore the function of GABAergic synapses. We discovered that the intraperitoneal administration of 6BIO during the critical period or young adolescents [P30 to P80 (4-week to 10-week)] normalised an altered E/I balance, the deficits of synaptic plasticity, and behavioural performance like social novelty, anxiety, and memory of the Syngap1 +/− mice. In summary, altered GABAergic function in Syngap1 +/− mice is due to reduced KCC2 expression leading to an increase in the intracellular chloride concentration that can be counteracted by the 6BIO, which restored cognitive, emotional, and social symptoms by pharmacological intervention, particularly in adulthood.
doi_str_mv 10.1007/s00221-021-06254-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2594291782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594291782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4b486992bd49987d0eebcbf8157025691872bb84493c783bd888052a5b28f2443</originalsourceid><addsrcrecordid>eNp9kc2K1TAUx4MozvXqC7iQgBtB6uSzSZYyjB8woKCuQ5Km92Zok5q0wxRfwLWP6JOYckcFFy4OyUn-55dz8gfgKUavMELivCBECG7QFi3hrLm9B3aYUdJgjNr7YIcQZg2TWJ2BR6VcbykV6CE4o0xQxTnfgW8fjyaPxqUhHYIzAwxx9vnGxzmkWBO4piUeoOnS4IurxwXmull8gWWNZpqDg9NxLWEDrNDEDlp_NDchLbnSOt8HF2pRJX1a48FM-OX5z-8_4Bicfwwe9GYo_sndugdf3lx-vnjXXH14-_7i9VXjqOBzwyyTrVLEdkwpKTrkvXW2l5gLRHirsBTEWsmYok5IajspJeLEcEtkTxije_DixJ1y-lo7n_UY6izDYKJPS9GEK0YUFpJU6fN_pNd1kFi706QlDFG2_eEekJPK5VRK9r2echhNXjVGerNGn6zRaIvNGn1bi57doRc7-u5PyW8vqoCeBKVexYPPf9_-D_YXVcibkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624034014</pqid></control><display><type>article</type><title>Pharmacological intervention in young adolescents rescues synaptic physiology and behavioural deficits in Syngap1+/− mice</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Verma, Vijaya ; Kumar, M. J. Vijay ; Sharma, Kavita ; Rajaram, Sridhar ; Muddashetty, Ravi ; Manjithaya, Ravi ; Behnisch, Thomas ; Clement, James P.</creator><creatorcontrib>Verma, Vijaya ; Kumar, M. J. Vijay ; Sharma, Kavita ; Rajaram, Sridhar ; Muddashetty, Ravi ; Manjithaya, Ravi ; Behnisch, Thomas ; Clement, James P.</creatorcontrib><description>Haploinsufficiency in SYNGAP1 is implicated in intellectual disability (ID) and autism spectrum disorder (ASD) and affects the maturation of dendritic spines. The abnormal spine development has been suggested to cause a disbalance of excitatory and inhibitory (E/I) neurotransmission at distinct developmental periods. In addition, E/I imbalances in Syngap1 +/− mice might be due to abnormalities in K + –Cl − co-transporter function (NKCC1, KCC2), in a maner similar to the murine models of Fragile-X and Rett syndromes. To study whether an altered intracellular chloride ion concentration represents an underlying mechanism of modified function of GABAergic synapses in Dentate Gyrus Granule Cells of Syngap1 +/− recordings were performed at different developmental stages of the mice. We observed depolarised neurons at P14–15 as illustrated by decreased Cl − reversal potential in Syngap1 +/− mice. The KCC2 expression was decreased compared to Wild-type (WT) mice at P14–15. The GSK-3β inhibitor, 6-bromoindirubin-3ʹ-oxime (6BIO) that crosses the blood–brain barrier, was tested to restore the function of GABAergic synapses. We discovered that the intraperitoneal administration of 6BIO during the critical period or young adolescents [P30 to P80 (4-week to 10-week)] normalised an altered E/I balance, the deficits of synaptic plasticity, and behavioural performance like social novelty, anxiety, and memory of the Syngap1 +/− mice. In summary, altered GABAergic function in Syngap1 +/− mice is due to reduced KCC2 expression leading to an increase in the intracellular chloride concentration that can be counteracted by the 6BIO, which restored cognitive, emotional, and social symptoms by pharmacological intervention, particularly in adulthood.</description><identifier>ISSN: 0014-4819</identifier><identifier>EISSN: 1432-1106</identifier><identifier>DOI: 10.1007/s00221-021-06254-x</identifier><identifier>PMID: 34739555</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adolescents ; Animal cognition ; Animal models ; Animals ; Autism ; Autism Spectrum Disorder ; Biomedical and Life Sciences ; Biomedicine ; Blood-brain barrier ; Brain research ; Chloride ; Chloride transport ; Cognitive ability ; Critical period ; Dendritic spines ; Dentate gyrus ; Developmental stages ; Glycogen Synthase Kinase 3 beta ; Granule cells ; Haploinsufficiency ; Homogenization ; Intellectual disabilities ; Intracellular ; Mice ; Mutation ; Neurology ; Neurosciences ; Neurotransmission ; Physiology ; Potassium ; Potassium-chloride cotransporter ; ras GTPase-Activating Proteins ; Recovery of function ; Research Article ; Synapses ; Synaptic plasticity ; Synaptic Transmission ; Teenagers ; γ-Aminobutyric acid</subject><ispartof>Experimental brain research, 2022, Vol.240 (1), p.289-309</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4b486992bd49987d0eebcbf8157025691872bb84493c783bd888052a5b28f2443</citedby><cites>FETCH-LOGICAL-c375t-4b486992bd49987d0eebcbf8157025691872bb84493c783bd888052a5b28f2443</cites><orcidid>0000-0001-7625-6430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00221-021-06254-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00221-021-06254-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34739555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verma, Vijaya</creatorcontrib><creatorcontrib>Kumar, M. J. Vijay</creatorcontrib><creatorcontrib>Sharma, Kavita</creatorcontrib><creatorcontrib>Rajaram, Sridhar</creatorcontrib><creatorcontrib>Muddashetty, Ravi</creatorcontrib><creatorcontrib>Manjithaya, Ravi</creatorcontrib><creatorcontrib>Behnisch, Thomas</creatorcontrib><creatorcontrib>Clement, James P.</creatorcontrib><title>Pharmacological intervention in young adolescents rescues synaptic physiology and behavioural deficits in Syngap1+/− mice</title><title>Experimental brain research</title><addtitle>Exp Brain Res</addtitle><addtitle>Exp Brain Res</addtitle><description>Haploinsufficiency in SYNGAP1 is implicated in intellectual disability (ID) and autism spectrum disorder (ASD) and affects the maturation of dendritic spines. The abnormal spine development has been suggested to cause a disbalance of excitatory and inhibitory (E/I) neurotransmission at distinct developmental periods. In addition, E/I imbalances in Syngap1 +/− mice might be due to abnormalities in K + –Cl − co-transporter function (NKCC1, KCC2), in a maner similar to the murine models of Fragile-X and Rett syndromes. To study whether an altered intracellular chloride ion concentration represents an underlying mechanism of modified function of GABAergic synapses in Dentate Gyrus Granule Cells of Syngap1 +/− recordings were performed at different developmental stages of the mice. We observed depolarised neurons at P14–15 as illustrated by decreased Cl − reversal potential in Syngap1 +/− mice. The KCC2 expression was decreased compared to Wild-type (WT) mice at P14–15. The GSK-3β inhibitor, 6-bromoindirubin-3ʹ-oxime (6BIO) that crosses the blood–brain barrier, was tested to restore the function of GABAergic synapses. We discovered that the intraperitoneal administration of 6BIO during the critical period or young adolescents [P30 to P80 (4-week to 10-week)] normalised an altered E/I balance, the deficits of synaptic plasticity, and behavioural performance like social novelty, anxiety, and memory of the Syngap1 +/− mice. In summary, altered GABAergic function in Syngap1 +/− mice is due to reduced KCC2 expression leading to an increase in the intracellular chloride concentration that can be counteracted by the 6BIO, which restored cognitive, emotional, and social symptoms by pharmacological intervention, particularly in adulthood.</description><subject>Adolescents</subject><subject>Animal cognition</subject><subject>Animal models</subject><subject>Animals</subject><subject>Autism</subject><subject>Autism Spectrum Disorder</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood-brain barrier</subject><subject>Brain research</subject><subject>Chloride</subject><subject>Chloride transport</subject><subject>Cognitive ability</subject><subject>Critical period</subject><subject>Dendritic spines</subject><subject>Dentate gyrus</subject><subject>Developmental stages</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>Granule cells</subject><subject>Haploinsufficiency</subject><subject>Homogenization</subject><subject>Intellectual disabilities</subject><subject>Intracellular</subject><subject>Mice</subject><subject>Mutation</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Neurotransmission</subject><subject>Physiology</subject><subject>Potassium</subject><subject>Potassium-chloride cotransporter</subject><subject>ras GTPase-Activating Proteins</subject><subject>Recovery of function</subject><subject>Research Article</subject><subject>Synapses</subject><subject>Synaptic plasticity</subject><subject>Synaptic Transmission</subject><subject>Teenagers</subject><subject>γ-Aminobutyric acid</subject><issn>0014-4819</issn><issn>1432-1106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc2K1TAUx4MozvXqC7iQgBtB6uSzSZYyjB8woKCuQ5Km92Zok5q0wxRfwLWP6JOYckcFFy4OyUn-55dz8gfgKUavMELivCBECG7QFi3hrLm9B3aYUdJgjNr7YIcQZg2TWJ2BR6VcbykV6CE4o0xQxTnfgW8fjyaPxqUhHYIzAwxx9vnGxzmkWBO4piUeoOnS4IurxwXmull8gWWNZpqDg9NxLWEDrNDEDlp_NDchLbnSOt8HF2pRJX1a48FM-OX5z-8_4Bicfwwe9GYo_sndugdf3lx-vnjXXH14-_7i9VXjqOBzwyyTrVLEdkwpKTrkvXW2l5gLRHirsBTEWsmYok5IajspJeLEcEtkTxije_DixJ1y-lo7n_UY6izDYKJPS9GEK0YUFpJU6fN_pNd1kFi706QlDFG2_eEekJPK5VRK9r2echhNXjVGerNGn6zRaIvNGn1bi57doRc7-u5PyW8vqoCeBKVexYPPf9_-D_YXVcibkQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Verma, Vijaya</creator><creator>Kumar, M. J. Vijay</creator><creator>Sharma, Kavita</creator><creator>Rajaram, Sridhar</creator><creator>Muddashetty, Ravi</creator><creator>Manjithaya, Ravi</creator><creator>Behnisch, Thomas</creator><creator>Clement, James P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2R</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7625-6430</orcidid></search><sort><creationdate>2022</creationdate><title>Pharmacological intervention in young adolescents rescues synaptic physiology and behavioural deficits in Syngap1+/− mice</title><author>Verma, Vijaya ; Kumar, M. J. Vijay ; Sharma, Kavita ; Rajaram, Sridhar ; Muddashetty, Ravi ; Manjithaya, Ravi ; Behnisch, Thomas ; Clement, James P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4b486992bd49987d0eebcbf8157025691872bb84493c783bd888052a5b28f2443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adolescents</topic><topic>Animal cognition</topic><topic>Animal models</topic><topic>Animals</topic><topic>Autism</topic><topic>Autism Spectrum Disorder</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood-brain barrier</topic><topic>Brain research</topic><topic>Chloride</topic><topic>Chloride transport</topic><topic>Cognitive ability</topic><topic>Critical period</topic><topic>Dendritic spines</topic><topic>Dentate gyrus</topic><topic>Developmental stages</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>Granule cells</topic><topic>Haploinsufficiency</topic><topic>Homogenization</topic><topic>Intellectual disabilities</topic><topic>Intracellular</topic><topic>Mice</topic><topic>Mutation</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Neurotransmission</topic><topic>Physiology</topic><topic>Potassium</topic><topic>Potassium-chloride cotransporter</topic><topic>ras GTPase-Activating Proteins</topic><topic>Recovery of function</topic><topic>Research Article</topic><topic>Synapses</topic><topic>Synaptic plasticity</topic><topic>Synaptic Transmission</topic><topic>Teenagers</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Vijaya</creatorcontrib><creatorcontrib>Kumar, M. J. Vijay</creatorcontrib><creatorcontrib>Sharma, Kavita</creatorcontrib><creatorcontrib>Rajaram, Sridhar</creatorcontrib><creatorcontrib>Muddashetty, Ravi</creatorcontrib><creatorcontrib>Manjithaya, Ravi</creatorcontrib><creatorcontrib>Behnisch, Thomas</creatorcontrib><creatorcontrib>Clement, James P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Social Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Vijaya</au><au>Kumar, M. J. Vijay</au><au>Sharma, Kavita</au><au>Rajaram, Sridhar</au><au>Muddashetty, Ravi</au><au>Manjithaya, Ravi</au><au>Behnisch, Thomas</au><au>Clement, James P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pharmacological intervention in young adolescents rescues synaptic physiology and behavioural deficits in Syngap1+/− mice</atitle><jtitle>Experimental brain research</jtitle><stitle>Exp Brain Res</stitle><addtitle>Exp Brain Res</addtitle><date>2022</date><risdate>2022</risdate><volume>240</volume><issue>1</issue><spage>289</spage><epage>309</epage><pages>289-309</pages><issn>0014-4819</issn><eissn>1432-1106</eissn><abstract>Haploinsufficiency in SYNGAP1 is implicated in intellectual disability (ID) and autism spectrum disorder (ASD) and affects the maturation of dendritic spines. The abnormal spine development has been suggested to cause a disbalance of excitatory and inhibitory (E/I) neurotransmission at distinct developmental periods. In addition, E/I imbalances in Syngap1 +/− mice might be due to abnormalities in K + –Cl − co-transporter function (NKCC1, KCC2), in a maner similar to the murine models of Fragile-X and Rett syndromes. To study whether an altered intracellular chloride ion concentration represents an underlying mechanism of modified function of GABAergic synapses in Dentate Gyrus Granule Cells of Syngap1 +/− recordings were performed at different developmental stages of the mice. We observed depolarised neurons at P14–15 as illustrated by decreased Cl − reversal potential in Syngap1 +/− mice. The KCC2 expression was decreased compared to Wild-type (WT) mice at P14–15. The GSK-3β inhibitor, 6-bromoindirubin-3ʹ-oxime (6BIO) that crosses the blood–brain barrier, was tested to restore the function of GABAergic synapses. We discovered that the intraperitoneal administration of 6BIO during the critical period or young adolescents [P30 to P80 (4-week to 10-week)] normalised an altered E/I balance, the deficits of synaptic plasticity, and behavioural performance like social novelty, anxiety, and memory of the Syngap1 +/− mice. In summary, altered GABAergic function in Syngap1 +/− mice is due to reduced KCC2 expression leading to an increase in the intracellular chloride concentration that can be counteracted by the 6BIO, which restored cognitive, emotional, and social symptoms by pharmacological intervention, particularly in adulthood.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34739555</pmid><doi>10.1007/s00221-021-06254-x</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7625-6430</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0014-4819
ispartof Experimental brain research, 2022, Vol.240 (1), p.289-309
issn 0014-4819
1432-1106
language eng
recordid cdi_proquest_miscellaneous_2594291782
source MEDLINE; SpringerLink Journals
subjects Adolescents
Animal cognition
Animal models
Animals
Autism
Autism Spectrum Disorder
Biomedical and Life Sciences
Biomedicine
Blood-brain barrier
Brain research
Chloride
Chloride transport
Cognitive ability
Critical period
Dendritic spines
Dentate gyrus
Developmental stages
Glycogen Synthase Kinase 3 beta
Granule cells
Haploinsufficiency
Homogenization
Intellectual disabilities
Intracellular
Mice
Mutation
Neurology
Neurosciences
Neurotransmission
Physiology
Potassium
Potassium-chloride cotransporter
ras GTPase-Activating Proteins
Recovery of function
Research Article
Synapses
Synaptic plasticity
Synaptic Transmission
Teenagers
γ-Aminobutyric acid
title Pharmacological intervention in young adolescents rescues synaptic physiology and behavioural deficits in Syngap1+/− mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pharmacological%20intervention%20in%20young%20adolescents%20rescues%20synaptic%20physiology%20and%20behavioural%20deficits%20in%20Syngap1+/%E2%88%92%20mice&rft.jtitle=Experimental%20brain%20research&rft.au=Verma,%20Vijaya&rft.date=2022&rft.volume=240&rft.issue=1&rft.spage=289&rft.epage=309&rft.pages=289-309&rft.issn=0014-4819&rft.eissn=1432-1106&rft_id=info:doi/10.1007/s00221-021-06254-x&rft_dat=%3Cproquest_cross%3E2594291782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624034014&rft_id=info:pmid/34739555&rfr_iscdi=true