Entropy Wave Instability in Dirac and Weyl Semimetals

Hydrodynamic instabilities driven by a direct current are analyzed in 2D and 3D relativisticlike systems with the Dyakonov-Shur boundary conditions supplemented by a boundary condition for temperature. Besides the conventional Dyakonov-Shur instability for plasmons, we find an entropy wave instabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-10, Vol.127 (17), p.1-176602, Article 176602
Hauptverfasser: Sukhachov, P. O., Gorbar, E. V., Shovkovy, I. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176602
container_issue 17
container_start_page 1
container_title Physical review letters
container_volume 127
creator Sukhachov, P. O.
Gorbar, E. V.
Shovkovy, I. A.
description Hydrodynamic instabilities driven by a direct current are analyzed in 2D and 3D relativisticlike systems with the Dyakonov-Shur boundary conditions supplemented by a boundary condition for temperature. Besides the conventional Dyakonov-Shur instability for plasmons, we find an entropy wave instability in both 2D and 3D systems. The entropy wave instability is a manifestation of the relativisticlike nature of electron quasiparticles and a nontrivial role of the energy current in such systems. These two instabilities occur for the opposite directions of fluid flow. While the Dyakonov-Shur instability is characterized by the plasma frequency in 3D and the system size in 2D, the frequency of the entropy wave instability is tunable by the system size and the flow velocity.
doi_str_mv 10.1103/PhysRevLett.127.176602
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2594291453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594291453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a519a61bb99daffcba99022263c8582656e15d6c405600e6f409f1f05895f42a3</originalsourceid><addsrcrecordid>eNpd0EtLAzEUhuEgCtbqX5CAGzdTz8lMMpOl1FuhoHihy5BJE0yZS03Swvx7R-pCXH2bh8PhJeQSYYYI-c3L5xBf7X5pU5ohK2dYCgHsiEwQSpmViMUxmQDkmEmA8pScxbgBAGSimhB-36XQbwe60ntLF11MuvaNTwP1Hb3zQRuquzVd2aGhb7b1rU26iefkxI1jL353Sj4e7t_nT9ny-XExv11mJkeRMs1RaoF1LeVaO2dqLSUwxkRuKl4xwYVFvhamAC4ArHAFSIcOeCW5K5jOp-T6cHcb-q-djUm1PhrbNLqz_S4qxmXBJBY8H-nVP7rpd6EbvxtVVWIlUcCoxEGZ0McYrFPb4FsdBoWgfmqqPzXVWFMdaubfEm9pFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2587189160</pqid></control><display><type>article</type><title>Entropy Wave Instability in Dirac and Weyl Semimetals</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sukhachov, P. O. ; Gorbar, E. V. ; Shovkovy, I. A.</creator><creatorcontrib>Sukhachov, P. O. ; Gorbar, E. V. ; Shovkovy, I. A.</creatorcontrib><description>Hydrodynamic instabilities driven by a direct current are analyzed in 2D and 3D relativisticlike systems with the Dyakonov-Shur boundary conditions supplemented by a boundary condition for temperature. Besides the conventional Dyakonov-Shur instability for plasmons, we find an entropy wave instability in both 2D and 3D systems. The entropy wave instability is a manifestation of the relativisticlike nature of electron quasiparticles and a nontrivial role of the energy current in such systems. These two instabilities occur for the opposite directions of fluid flow. While the Dyakonov-Shur instability is characterized by the plasma frequency in 3D and the system size in 2D, the frequency of the entropy wave instability is tunable by the system size and the flow velocity.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.127.176602</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Boundary conditions ; Direct current ; Elementary excitations ; Entropy ; Flow stability ; Flow velocity ; Fluid dynamics ; Fluid flow ; Metalloids ; Plasma frequencies ; Plasmons ; Two dimensional analysis</subject><ispartof>Physical review letters, 2021-10, Vol.127 (17), p.1-176602, Article 176602</ispartof><rights>Copyright American Physical Society Oct 22, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a519a61bb99daffcba99022263c8582656e15d6c405600e6f409f1f05895f42a3</citedby><cites>FETCH-LOGICAL-c316t-a519a61bb99daffcba99022263c8582656e15d6c405600e6f409f1f05895f42a3</cites><orcidid>0000-0002-2684-1276 ; 0000-0003-2280-8249 ; 0000-0002-5230-6891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Sukhachov, P. O.</creatorcontrib><creatorcontrib>Gorbar, E. V.</creatorcontrib><creatorcontrib>Shovkovy, I. A.</creatorcontrib><title>Entropy Wave Instability in Dirac and Weyl Semimetals</title><title>Physical review letters</title><description>Hydrodynamic instabilities driven by a direct current are analyzed in 2D and 3D relativisticlike systems with the Dyakonov-Shur boundary conditions supplemented by a boundary condition for temperature. Besides the conventional Dyakonov-Shur instability for plasmons, we find an entropy wave instability in both 2D and 3D systems. The entropy wave instability is a manifestation of the relativisticlike nature of electron quasiparticles and a nontrivial role of the energy current in such systems. These two instabilities occur for the opposite directions of fluid flow. While the Dyakonov-Shur instability is characterized by the plasma frequency in 3D and the system size in 2D, the frequency of the entropy wave instability is tunable by the system size and the flow velocity.</description><subject>Boundary conditions</subject><subject>Direct current</subject><subject>Elementary excitations</subject><subject>Entropy</subject><subject>Flow stability</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Metalloids</subject><subject>Plasma frequencies</subject><subject>Plasmons</subject><subject>Two dimensional analysis</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0EtLAzEUhuEgCtbqX5CAGzdTz8lMMpOl1FuhoHihy5BJE0yZS03Swvx7R-pCXH2bh8PhJeQSYYYI-c3L5xBf7X5pU5ohK2dYCgHsiEwQSpmViMUxmQDkmEmA8pScxbgBAGSimhB-36XQbwe60ntLF11MuvaNTwP1Hb3zQRuquzVd2aGhb7b1rU26iefkxI1jL353Sj4e7t_nT9ny-XExv11mJkeRMs1RaoF1LeVaO2dqLSUwxkRuKl4xwYVFvhamAC4ArHAFSIcOeCW5K5jOp-T6cHcb-q-djUm1PhrbNLqz_S4qxmXBJBY8H-nVP7rpd6EbvxtVVWIlUcCoxEGZ0McYrFPb4FsdBoWgfmqqPzXVWFMdaubfEm9pFw</recordid><startdate>20211022</startdate><enddate>20211022</enddate><creator>Sukhachov, P. O.</creator><creator>Gorbar, E. V.</creator><creator>Shovkovy, I. A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2684-1276</orcidid><orcidid>https://orcid.org/0000-0003-2280-8249</orcidid><orcidid>https://orcid.org/0000-0002-5230-6891</orcidid></search><sort><creationdate>20211022</creationdate><title>Entropy Wave Instability in Dirac and Weyl Semimetals</title><author>Sukhachov, P. O. ; Gorbar, E. V. ; Shovkovy, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a519a61bb99daffcba99022263c8582656e15d6c405600e6f409f1f05895f42a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Direct current</topic><topic>Elementary excitations</topic><topic>Entropy</topic><topic>Flow stability</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Metalloids</topic><topic>Plasma frequencies</topic><topic>Plasmons</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sukhachov, P. O.</creatorcontrib><creatorcontrib>Gorbar, E. V.</creatorcontrib><creatorcontrib>Shovkovy, I. A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sukhachov, P. O.</au><au>Gorbar, E. V.</au><au>Shovkovy, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy Wave Instability in Dirac and Weyl Semimetals</atitle><jtitle>Physical review letters</jtitle><date>2021-10-22</date><risdate>2021</risdate><volume>127</volume><issue>17</issue><spage>1</spage><epage>176602</epage><pages>1-176602</pages><artnum>176602</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Hydrodynamic instabilities driven by a direct current are analyzed in 2D and 3D relativisticlike systems with the Dyakonov-Shur boundary conditions supplemented by a boundary condition for temperature. Besides the conventional Dyakonov-Shur instability for plasmons, we find an entropy wave instability in both 2D and 3D systems. The entropy wave instability is a manifestation of the relativisticlike nature of electron quasiparticles and a nontrivial role of the energy current in such systems. These two instabilities occur for the opposite directions of fluid flow. While the Dyakonov-Shur instability is characterized by the plasma frequency in 3D and the system size in 2D, the frequency of the entropy wave instability is tunable by the system size and the flow velocity.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.127.176602</doi><orcidid>https://orcid.org/0000-0002-2684-1276</orcidid><orcidid>https://orcid.org/0000-0003-2280-8249</orcidid><orcidid>https://orcid.org/0000-0002-5230-6891</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-10, Vol.127 (17), p.1-176602, Article 176602
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2594291453
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Boundary conditions
Direct current
Elementary excitations
Entropy
Flow stability
Flow velocity
Fluid dynamics
Fluid flow
Metalloids
Plasma frequencies
Plasmons
Two dimensional analysis
title Entropy Wave Instability in Dirac and Weyl Semimetals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20Wave%20Instability%20in%20Dirac%20and%20Weyl%20Semimetals&rft.jtitle=Physical%20review%20letters&rft.au=Sukhachov,%20P.%E2%80%89O.&rft.date=2021-10-22&rft.volume=127&rft.issue=17&rft.spage=1&rft.epage=176602&rft.pages=1-176602&rft.artnum=176602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.127.176602&rft_dat=%3Cproquest_cross%3E2594291453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2587189160&rft_id=info:pmid/&rfr_iscdi=true