Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review

Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures. AI techniques comprise traditional machin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2021-12, Vol.139, p.104949-104949, Article 104949
Hauptverfasser: Khodatars, Marjane, Shoeibi, Afshin, Sadeghi, Delaram, Ghaasemi, Navid, Jafari, Mahboobeh, Moridian, Parisa, Khadem, Ali, Alizadehsani, Roohallah, Zare, Assef, Kong, Yinan, Khosravi, Abbas, Nahavandi, Saeid, Hussain, Sadiq, Acharya, U. Rajendra, Berk, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104949
container_issue
container_start_page 104949
container_title Computers in biology and medicine
container_volume 139
creator Khodatars, Marjane
Shoeibi, Afshin
Sadeghi, Delaram
Ghaasemi, Navid
Jafari, Mahboobeh
Moridian, Parisa
Khadem, Ali
Alizadehsani, Roohallah
Zare, Assef
Kong, Yinan
Khosravi, Abbas
Nahavandi, Saeid
Hussain, Sadiq
Acharya, U. Rajendra
Berk, Michael
description Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures. AI techniques comprise traditional machine learning (ML) approaches and deep learning (DL) techniques. Conventional ML methods employ various feature extraction and classification techniques, but in DL, the process of feature extraction and classification is accomplished intelligently and integrally. DL methods for diagnosis of ASD have been focused on neuroimaging-based approaches. Neuroimaging techniques are non-invasive disease markers potentially useful for ASD diagnosis. Structural and functional neuroimaging techniques provide physicians substantial information about the structure (anatomy and structural connectivity) and function (activity and functional connectivity) of the brain. Due to the intricate structure and function of the brain, proposing optimum procedures for ASD diagnosis with neuroimaging data without exploiting powerful AI techniques like DL may be challenging. In this paper, studies conducted with the aid of DL networks to distinguish ASD are investigated. Rehabilitation tools provided for supporting ASD patients utilizing DL networks are also assessed. Finally, we will present important challenges in the automated detection and rehabilitation of ASD and propose some future works. •A review of the ASD diagnosis using deep learning methods are provided.•Various neuroimaging modalities for ASD diagnosis are presented.•Advantages and disadvantages of neuroimaging modalities for ASD diagnosis are introduced. .•Papers published from 2016 are reviewed and structured in tabular form.•Challenges and future works for ASD detection are discussed comprehensively.
doi_str_mv 10.1016/j.compbiomed.2021.104949
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2594291326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482521007435</els_id><sourcerecordid>2604005681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-bf3feb66a50775f807decd2d4cb3c96aa2743a2d2e91d26cd9ee493d35550e693</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi0EotPCX0CW2LDJ4HdidkMLpVIlFoW15dg3g0eJHeykiH9fj6YVEpuuLF2f-9D5EMKUbCmh6uNh69I09yFN4LeMMFrLQgv9Am1o1-qGSC5eog0hlDSiY_IMnZdyIIQIwslrdMZFy1vK9QbtrwBmPILNMcQ9HlLGEdacwmT3tdD0toDHPth9TCUUbKPHGX7ZPoxhsUtIEacB79YllAnfzeCWvE74KpSUPeRPeFfp-wB_3qBXgx0LvH18L9DPr19-XH5rbr9f31zubhsnCFuafuAD9EpZSdpWDh1pPTjPvHA9d1pZy1rBLfMMNPVMOa8BhOaeSykJKM0v0IfT3Dmn3yuUxUyhOBhHGyGtxTCpBdOUM1XR9_-hh7TmWK8zTFVTRKqOVqo7US6nUjIMZs5VTv5rKDHHMMzB_AvDHMMwpzBq67vHBWt__HtqfLJfgc8nAKqRaimb4gJEBz7katL4FJ7f8gD28qCj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604005681</pqid></control><display><type>article</type><title>Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Khodatars, Marjane ; Shoeibi, Afshin ; Sadeghi, Delaram ; Ghaasemi, Navid ; Jafari, Mahboobeh ; Moridian, Parisa ; Khadem, Ali ; Alizadehsani, Roohallah ; Zare, Assef ; Kong, Yinan ; Khosravi, Abbas ; Nahavandi, Saeid ; Hussain, Sadiq ; Acharya, U. Rajendra ; Berk, Michael</creator><creatorcontrib>Khodatars, Marjane ; Shoeibi, Afshin ; Sadeghi, Delaram ; Ghaasemi, Navid ; Jafari, Mahboobeh ; Moridian, Parisa ; Khadem, Ali ; Alizadehsani, Roohallah ; Zare, Assef ; Kong, Yinan ; Khosravi, Abbas ; Nahavandi, Saeid ; Hussain, Sadiq ; Acharya, U. Rajendra ; Berk, Michael</creatorcontrib><description>Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures. AI techniques comprise traditional machine learning (ML) approaches and deep learning (DL) techniques. Conventional ML methods employ various feature extraction and classification techniques, but in DL, the process of feature extraction and classification is accomplished intelligently and integrally. DL methods for diagnosis of ASD have been focused on neuroimaging-based approaches. Neuroimaging techniques are non-invasive disease markers potentially useful for ASD diagnosis. Structural and functional neuroimaging techniques provide physicians substantial information about the structure (anatomy and structural connectivity) and function (activity and functional connectivity) of the brain. Due to the intricate structure and function of the brain, proposing optimum procedures for ASD diagnosis with neuroimaging data without exploiting powerful AI techniques like DL may be challenging. In this paper, studies conducted with the aid of DL networks to distinguish ASD are investigated. Rehabilitation tools provided for supporting ASD patients utilizing DL networks are also assessed. Finally, we will present important challenges in the automated detection and rehabilitation of ASD and propose some future works. •A review of the ASD diagnosis using deep learning methods are provided.•Various neuroimaging modalities for ASD diagnosis are presented.•Advantages and disadvantages of neuroimaging modalities for ASD diagnosis are introduced. .•Papers published from 2016 are reviewed and structured in tabular form.•Challenges and future works for ASD detection are discussed comprehensively.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2021.104949</identifier><identifier>PMID: 34737139</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Artificial Intelligence ; Autism ; Autism spectrum disorder ; Autism Spectrum Disorder - diagnostic imaging ; Automation ; Brain ; Classification ; Datasets ; Deep Learning ; Diagnosis ; Feature extraction ; Humans ; Learning algorithms ; Machine learning ; Magnetic Resonance Imaging ; Medical diagnosis ; Medical imaging ; Mental disorders ; Neural networks ; Neuroimaging ; Neuroscience ; Physicians ; Rehabilitation ; Spectrum analysis ; Structure-function relationships ; Transcranial magnetic stimulation</subject><ispartof>Computers in biology and medicine, 2021-12, Vol.139, p.104949-104949, Article 104949</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-bf3feb66a50775f807decd2d4cb3c96aa2743a2d2e91d26cd9ee493d35550e693</citedby><cites>FETCH-LOGICAL-c402t-bf3feb66a50775f807decd2d4cb3c96aa2743a2d2e91d26cd9ee493d35550e693</cites><orcidid>0000-0002-8517-0046 ; 0000-0001-7964-4033 ; 0000-0001-6830-0286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2604005681?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72341</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34737139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khodatars, Marjane</creatorcontrib><creatorcontrib>Shoeibi, Afshin</creatorcontrib><creatorcontrib>Sadeghi, Delaram</creatorcontrib><creatorcontrib>Ghaasemi, Navid</creatorcontrib><creatorcontrib>Jafari, Mahboobeh</creatorcontrib><creatorcontrib>Moridian, Parisa</creatorcontrib><creatorcontrib>Khadem, Ali</creatorcontrib><creatorcontrib>Alizadehsani, Roohallah</creatorcontrib><creatorcontrib>Zare, Assef</creatorcontrib><creatorcontrib>Kong, Yinan</creatorcontrib><creatorcontrib>Khosravi, Abbas</creatorcontrib><creatorcontrib>Nahavandi, Saeid</creatorcontrib><creatorcontrib>Hussain, Sadiq</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><creatorcontrib>Berk, Michael</creatorcontrib><title>Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures. AI techniques comprise traditional machine learning (ML) approaches and deep learning (DL) techniques. Conventional ML methods employ various feature extraction and classification techniques, but in DL, the process of feature extraction and classification is accomplished intelligently and integrally. DL methods for diagnosis of ASD have been focused on neuroimaging-based approaches. Neuroimaging techniques are non-invasive disease markers potentially useful for ASD diagnosis. Structural and functional neuroimaging techniques provide physicians substantial information about the structure (anatomy and structural connectivity) and function (activity and functional connectivity) of the brain. Due to the intricate structure and function of the brain, proposing optimum procedures for ASD diagnosis with neuroimaging data without exploiting powerful AI techniques like DL may be challenging. In this paper, studies conducted with the aid of DL networks to distinguish ASD are investigated. Rehabilitation tools provided for supporting ASD patients utilizing DL networks are also assessed. Finally, we will present important challenges in the automated detection and rehabilitation of ASD and propose some future works. •A review of the ASD diagnosis using deep learning methods are provided.•Various neuroimaging modalities for ASD diagnosis are presented.•Advantages and disadvantages of neuroimaging modalities for ASD diagnosis are introduced. .•Papers published from 2016 are reviewed and structured in tabular form.•Challenges and future works for ASD detection are discussed comprehensively.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Autism</subject><subject>Autism spectrum disorder</subject><subject>Autism Spectrum Disorder - diagnostic imaging</subject><subject>Automation</subject><subject>Brain</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Mental disorders</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neuroscience</subject><subject>Physicians</subject><subject>Rehabilitation</subject><subject>Spectrum analysis</subject><subject>Structure-function relationships</subject><subject>Transcranial magnetic stimulation</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1DAURi0EotPCX0CW2LDJ4HdidkMLpVIlFoW15dg3g0eJHeykiH9fj6YVEpuuLF2f-9D5EMKUbCmh6uNh69I09yFN4LeMMFrLQgv9Am1o1-qGSC5eog0hlDSiY_IMnZdyIIQIwslrdMZFy1vK9QbtrwBmPILNMcQ9HlLGEdacwmT3tdD0toDHPth9TCUUbKPHGX7ZPoxhsUtIEacB79YllAnfzeCWvE74KpSUPeRPeFfp-wB_3qBXgx0LvH18L9DPr19-XH5rbr9f31zubhsnCFuafuAD9EpZSdpWDh1pPTjPvHA9d1pZy1rBLfMMNPVMOa8BhOaeSykJKM0v0IfT3Dmn3yuUxUyhOBhHGyGtxTCpBdOUM1XR9_-hh7TmWK8zTFVTRKqOVqo7US6nUjIMZs5VTv5rKDHHMMzB_AvDHMMwpzBq67vHBWt__HtqfLJfgc8nAKqRaimb4gJEBz7katL4FJ7f8gD28qCj</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Khodatars, Marjane</creator><creator>Shoeibi, Afshin</creator><creator>Sadeghi, Delaram</creator><creator>Ghaasemi, Navid</creator><creator>Jafari, Mahboobeh</creator><creator>Moridian, Parisa</creator><creator>Khadem, Ali</creator><creator>Alizadehsani, Roohallah</creator><creator>Zare, Assef</creator><creator>Kong, Yinan</creator><creator>Khosravi, Abbas</creator><creator>Nahavandi, Saeid</creator><creator>Hussain, Sadiq</creator><creator>Acharya, U. Rajendra</creator><creator>Berk, Michael</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8517-0046</orcidid><orcidid>https://orcid.org/0000-0001-7964-4033</orcidid><orcidid>https://orcid.org/0000-0001-6830-0286</orcidid></search><sort><creationdate>202112</creationdate><title>Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review</title><author>Khodatars, Marjane ; Shoeibi, Afshin ; Sadeghi, Delaram ; Ghaasemi, Navid ; Jafari, Mahboobeh ; Moridian, Parisa ; Khadem, Ali ; Alizadehsani, Roohallah ; Zare, Assef ; Kong, Yinan ; Khosravi, Abbas ; Nahavandi, Saeid ; Hussain, Sadiq ; Acharya, U. Rajendra ; Berk, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-bf3feb66a50775f807decd2d4cb3c96aa2743a2d2e91d26cd9ee493d35550e693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Autism</topic><topic>Autism spectrum disorder</topic><topic>Autism Spectrum Disorder - diagnostic imaging</topic><topic>Automation</topic><topic>Brain</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Mental disorders</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neuroscience</topic><topic>Physicians</topic><topic>Rehabilitation</topic><topic>Spectrum analysis</topic><topic>Structure-function relationships</topic><topic>Transcranial magnetic stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodatars, Marjane</creatorcontrib><creatorcontrib>Shoeibi, Afshin</creatorcontrib><creatorcontrib>Sadeghi, Delaram</creatorcontrib><creatorcontrib>Ghaasemi, Navid</creatorcontrib><creatorcontrib>Jafari, Mahboobeh</creatorcontrib><creatorcontrib>Moridian, Parisa</creatorcontrib><creatorcontrib>Khadem, Ali</creatorcontrib><creatorcontrib>Alizadehsani, Roohallah</creatorcontrib><creatorcontrib>Zare, Assef</creatorcontrib><creatorcontrib>Kong, Yinan</creatorcontrib><creatorcontrib>Khosravi, Abbas</creatorcontrib><creatorcontrib>Nahavandi, Saeid</creatorcontrib><creatorcontrib>Hussain, Sadiq</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><creatorcontrib>Berk, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khodatars, Marjane</au><au>Shoeibi, Afshin</au><au>Sadeghi, Delaram</au><au>Ghaasemi, Navid</au><au>Jafari, Mahboobeh</au><au>Moridian, Parisa</au><au>Khadem, Ali</au><au>Alizadehsani, Roohallah</au><au>Zare, Assef</au><au>Kong, Yinan</au><au>Khosravi, Abbas</au><au>Nahavandi, Saeid</au><au>Hussain, Sadiq</au><au>Acharya, U. Rajendra</au><au>Berk, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2021-12</date><risdate>2021</risdate><volume>139</volume><spage>104949</spage><epage>104949</epage><pages>104949-104949</pages><artnum>104949</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures. AI techniques comprise traditional machine learning (ML) approaches and deep learning (DL) techniques. Conventional ML methods employ various feature extraction and classification techniques, but in DL, the process of feature extraction and classification is accomplished intelligently and integrally. DL methods for diagnosis of ASD have been focused on neuroimaging-based approaches. Neuroimaging techniques are non-invasive disease markers potentially useful for ASD diagnosis. Structural and functional neuroimaging techniques provide physicians substantial information about the structure (anatomy and structural connectivity) and function (activity and functional connectivity) of the brain. Due to the intricate structure and function of the brain, proposing optimum procedures for ASD diagnosis with neuroimaging data without exploiting powerful AI techniques like DL may be challenging. In this paper, studies conducted with the aid of DL networks to distinguish ASD are investigated. Rehabilitation tools provided for supporting ASD patients utilizing DL networks are also assessed. Finally, we will present important challenges in the automated detection and rehabilitation of ASD and propose some future works. •A review of the ASD diagnosis using deep learning methods are provided.•Various neuroimaging modalities for ASD diagnosis are presented.•Advantages and disadvantages of neuroimaging modalities for ASD diagnosis are introduced. .•Papers published from 2016 are reviewed and structured in tabular form.•Challenges and future works for ASD detection are discussed comprehensively.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>34737139</pmid><doi>10.1016/j.compbiomed.2021.104949</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8517-0046</orcidid><orcidid>https://orcid.org/0000-0001-7964-4033</orcidid><orcidid>https://orcid.org/0000-0001-6830-0286</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2021-12, Vol.139, p.104949-104949, Article 104949
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2594291326
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Algorithms
Artificial Intelligence
Autism
Autism spectrum disorder
Autism Spectrum Disorder - diagnostic imaging
Automation
Brain
Classification
Datasets
Deep Learning
Diagnosis
Feature extraction
Humans
Learning algorithms
Machine learning
Magnetic Resonance Imaging
Medical diagnosis
Medical imaging
Mental disorders
Neural networks
Neuroimaging
Neuroscience
Physicians
Rehabilitation
Spectrum analysis
Structure-function relationships
Transcranial magnetic stimulation
title Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20neuroimaging-based%20diagnosis%20and%20rehabilitation%20of%20Autism%20Spectrum%20Disorder:%20A%20review&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Khodatars,%20Marjane&rft.date=2021-12&rft.volume=139&rft.spage=104949&rft.epage=104949&rft.pages=104949-104949&rft.artnum=104949&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2021.104949&rft_dat=%3Cproquest_cross%3E2604005681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604005681&rft_id=info:pmid/34737139&rft_els_id=S0010482521007435&rfr_iscdi=true