Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review
Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures. AI techniques comprise traditional machin...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2021-12, Vol.139, p.104949-104949, Article 104949 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104949 |
---|---|
container_issue | |
container_start_page | 104949 |
container_title | Computers in biology and medicine |
container_volume | 139 |
creator | Khodatars, Marjane Shoeibi, Afshin Sadeghi, Delaram Ghaasemi, Navid Jafari, Mahboobeh Moridian, Parisa Khadem, Ali Alizadehsani, Roohallah Zare, Assef Kong, Yinan Khosravi, Abbas Nahavandi, Saeid Hussain, Sadiq Acharya, U. Rajendra Berk, Michael |
description | Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures. AI techniques comprise traditional machine learning (ML) approaches and deep learning (DL) techniques. Conventional ML methods employ various feature extraction and classification techniques, but in DL, the process of feature extraction and classification is accomplished intelligently and integrally. DL methods for diagnosis of ASD have been focused on neuroimaging-based approaches. Neuroimaging techniques are non-invasive disease markers potentially useful for ASD diagnosis. Structural and functional neuroimaging techniques provide physicians substantial information about the structure (anatomy and structural connectivity) and function (activity and functional connectivity) of the brain. Due to the intricate structure and function of the brain, proposing optimum procedures for ASD diagnosis with neuroimaging data without exploiting powerful AI techniques like DL may be challenging. In this paper, studies conducted with the aid of DL networks to distinguish ASD are investigated. Rehabilitation tools provided for supporting ASD patients utilizing DL networks are also assessed. Finally, we will present important challenges in the automated detection and rehabilitation of ASD and propose some future works.
•A review of the ASD diagnosis using deep learning methods are provided.•Various neuroimaging modalities for ASD diagnosis are presented.•Advantages and disadvantages of neuroimaging modalities for ASD diagnosis are introduced. .•Papers published from 2016 are reviewed and structured in tabular form.•Challenges and future works for ASD detection are discussed comprehensively. |
doi_str_mv | 10.1016/j.compbiomed.2021.104949 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2594291326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482521007435</els_id><sourcerecordid>2604005681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-bf3feb66a50775f807decd2d4cb3c96aa2743a2d2e91d26cd9ee493d35550e693</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi0EotPCX0CW2LDJ4HdidkMLpVIlFoW15dg3g0eJHeykiH9fj6YVEpuuLF2f-9D5EMKUbCmh6uNh69I09yFN4LeMMFrLQgv9Am1o1-qGSC5eog0hlDSiY_IMnZdyIIQIwslrdMZFy1vK9QbtrwBmPILNMcQ9HlLGEdacwmT3tdD0toDHPth9TCUUbKPHGX7ZPoxhsUtIEacB79YllAnfzeCWvE74KpSUPeRPeFfp-wB_3qBXgx0LvH18L9DPr19-XH5rbr9f31zubhsnCFuafuAD9EpZSdpWDh1pPTjPvHA9d1pZy1rBLfMMNPVMOa8BhOaeSykJKM0v0IfT3Dmn3yuUxUyhOBhHGyGtxTCpBdOUM1XR9_-hh7TmWK8zTFVTRKqOVqo7US6nUjIMZs5VTv5rKDHHMMzB_AvDHMMwpzBq67vHBWt__HtqfLJfgc8nAKqRaimb4gJEBz7katL4FJ7f8gD28qCj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604005681</pqid></control><display><type>article</type><title>Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Khodatars, Marjane ; Shoeibi, Afshin ; Sadeghi, Delaram ; Ghaasemi, Navid ; Jafari, Mahboobeh ; Moridian, Parisa ; Khadem, Ali ; Alizadehsani, Roohallah ; Zare, Assef ; Kong, Yinan ; Khosravi, Abbas ; Nahavandi, Saeid ; Hussain, Sadiq ; Acharya, U. Rajendra ; Berk, Michael</creator><creatorcontrib>Khodatars, Marjane ; Shoeibi, Afshin ; Sadeghi, Delaram ; Ghaasemi, Navid ; Jafari, Mahboobeh ; Moridian, Parisa ; Khadem, Ali ; Alizadehsani, Roohallah ; Zare, Assef ; Kong, Yinan ; Khosravi, Abbas ; Nahavandi, Saeid ; Hussain, Sadiq ; Acharya, U. Rajendra ; Berk, Michael</creatorcontrib><description>Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures. AI techniques comprise traditional machine learning (ML) approaches and deep learning (DL) techniques. Conventional ML methods employ various feature extraction and classification techniques, but in DL, the process of feature extraction and classification is accomplished intelligently and integrally. DL methods for diagnosis of ASD have been focused on neuroimaging-based approaches. Neuroimaging techniques are non-invasive disease markers potentially useful for ASD diagnosis. Structural and functional neuroimaging techniques provide physicians substantial information about the structure (anatomy and structural connectivity) and function (activity and functional connectivity) of the brain. Due to the intricate structure and function of the brain, proposing optimum procedures for ASD diagnosis with neuroimaging data without exploiting powerful AI techniques like DL may be challenging. In this paper, studies conducted with the aid of DL networks to distinguish ASD are investigated. Rehabilitation tools provided for supporting ASD patients utilizing DL networks are also assessed. Finally, we will present important challenges in the automated detection and rehabilitation of ASD and propose some future works.
•A review of the ASD diagnosis using deep learning methods are provided.•Various neuroimaging modalities for ASD diagnosis are presented.•Advantages and disadvantages of neuroimaging modalities for ASD diagnosis are introduced. .•Papers published from 2016 are reviewed and structured in tabular form.•Challenges and future works for ASD detection are discussed comprehensively.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2021.104949</identifier><identifier>PMID: 34737139</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Artificial Intelligence ; Autism ; Autism spectrum disorder ; Autism Spectrum Disorder - diagnostic imaging ; Automation ; Brain ; Classification ; Datasets ; Deep Learning ; Diagnosis ; Feature extraction ; Humans ; Learning algorithms ; Machine learning ; Magnetic Resonance Imaging ; Medical diagnosis ; Medical imaging ; Mental disorders ; Neural networks ; Neuroimaging ; Neuroscience ; Physicians ; Rehabilitation ; Spectrum analysis ; Structure-function relationships ; Transcranial magnetic stimulation</subject><ispartof>Computers in biology and medicine, 2021-12, Vol.139, p.104949-104949, Article 104949</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-bf3feb66a50775f807decd2d4cb3c96aa2743a2d2e91d26cd9ee493d35550e693</citedby><cites>FETCH-LOGICAL-c402t-bf3feb66a50775f807decd2d4cb3c96aa2743a2d2e91d26cd9ee493d35550e693</cites><orcidid>0000-0002-8517-0046 ; 0000-0001-7964-4033 ; 0000-0001-6830-0286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2604005681?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72341</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34737139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khodatars, Marjane</creatorcontrib><creatorcontrib>Shoeibi, Afshin</creatorcontrib><creatorcontrib>Sadeghi, Delaram</creatorcontrib><creatorcontrib>Ghaasemi, Navid</creatorcontrib><creatorcontrib>Jafari, Mahboobeh</creatorcontrib><creatorcontrib>Moridian, Parisa</creatorcontrib><creatorcontrib>Khadem, Ali</creatorcontrib><creatorcontrib>Alizadehsani, Roohallah</creatorcontrib><creatorcontrib>Zare, Assef</creatorcontrib><creatorcontrib>Kong, Yinan</creatorcontrib><creatorcontrib>Khosravi, Abbas</creatorcontrib><creatorcontrib>Nahavandi, Saeid</creatorcontrib><creatorcontrib>Hussain, Sadiq</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><creatorcontrib>Berk, Michael</creatorcontrib><title>Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures. AI techniques comprise traditional machine learning (ML) approaches and deep learning (DL) techniques. Conventional ML methods employ various feature extraction and classification techniques, but in DL, the process of feature extraction and classification is accomplished intelligently and integrally. DL methods for diagnosis of ASD have been focused on neuroimaging-based approaches. Neuroimaging techniques are non-invasive disease markers potentially useful for ASD diagnosis. Structural and functional neuroimaging techniques provide physicians substantial information about the structure (anatomy and structural connectivity) and function (activity and functional connectivity) of the brain. Due to the intricate structure and function of the brain, proposing optimum procedures for ASD diagnosis with neuroimaging data without exploiting powerful AI techniques like DL may be challenging. In this paper, studies conducted with the aid of DL networks to distinguish ASD are investigated. Rehabilitation tools provided for supporting ASD patients utilizing DL networks are also assessed. Finally, we will present important challenges in the automated detection and rehabilitation of ASD and propose some future works.
•A review of the ASD diagnosis using deep learning methods are provided.•Various neuroimaging modalities for ASD diagnosis are presented.•Advantages and disadvantages of neuroimaging modalities for ASD diagnosis are introduced. .•Papers published from 2016 are reviewed and structured in tabular form.•Challenges and future works for ASD detection are discussed comprehensively.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Autism</subject><subject>Autism spectrum disorder</subject><subject>Autism Spectrum Disorder - diagnostic imaging</subject><subject>Automation</subject><subject>Brain</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Mental disorders</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neuroscience</subject><subject>Physicians</subject><subject>Rehabilitation</subject><subject>Spectrum analysis</subject><subject>Structure-function relationships</subject><subject>Transcranial magnetic stimulation</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1DAURi0EotPCX0CW2LDJ4HdidkMLpVIlFoW15dg3g0eJHeykiH9fj6YVEpuuLF2f-9D5EMKUbCmh6uNh69I09yFN4LeMMFrLQgv9Am1o1-qGSC5eog0hlDSiY_IMnZdyIIQIwslrdMZFy1vK9QbtrwBmPILNMcQ9HlLGEdacwmT3tdD0toDHPth9TCUUbKPHGX7ZPoxhsUtIEacB79YllAnfzeCWvE74KpSUPeRPeFfp-wB_3qBXgx0LvH18L9DPr19-XH5rbr9f31zubhsnCFuafuAD9EpZSdpWDh1pPTjPvHA9d1pZy1rBLfMMNPVMOa8BhOaeSykJKM0v0IfT3Dmn3yuUxUyhOBhHGyGtxTCpBdOUM1XR9_-hh7TmWK8zTFVTRKqOVqo7US6nUjIMZs5VTv5rKDHHMMzB_AvDHMMwpzBq67vHBWt__HtqfLJfgc8nAKqRaimb4gJEBz7katL4FJ7f8gD28qCj</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Khodatars, Marjane</creator><creator>Shoeibi, Afshin</creator><creator>Sadeghi, Delaram</creator><creator>Ghaasemi, Navid</creator><creator>Jafari, Mahboobeh</creator><creator>Moridian, Parisa</creator><creator>Khadem, Ali</creator><creator>Alizadehsani, Roohallah</creator><creator>Zare, Assef</creator><creator>Kong, Yinan</creator><creator>Khosravi, Abbas</creator><creator>Nahavandi, Saeid</creator><creator>Hussain, Sadiq</creator><creator>Acharya, U. Rajendra</creator><creator>Berk, Michael</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8517-0046</orcidid><orcidid>https://orcid.org/0000-0001-7964-4033</orcidid><orcidid>https://orcid.org/0000-0001-6830-0286</orcidid></search><sort><creationdate>202112</creationdate><title>Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review</title><author>Khodatars, Marjane ; Shoeibi, Afshin ; Sadeghi, Delaram ; Ghaasemi, Navid ; Jafari, Mahboobeh ; Moridian, Parisa ; Khadem, Ali ; Alizadehsani, Roohallah ; Zare, Assef ; Kong, Yinan ; Khosravi, Abbas ; Nahavandi, Saeid ; Hussain, Sadiq ; Acharya, U. Rajendra ; Berk, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-bf3feb66a50775f807decd2d4cb3c96aa2743a2d2e91d26cd9ee493d35550e693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Autism</topic><topic>Autism spectrum disorder</topic><topic>Autism Spectrum Disorder - diagnostic imaging</topic><topic>Automation</topic><topic>Brain</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Mental disorders</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neuroscience</topic><topic>Physicians</topic><topic>Rehabilitation</topic><topic>Spectrum analysis</topic><topic>Structure-function relationships</topic><topic>Transcranial magnetic stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodatars, Marjane</creatorcontrib><creatorcontrib>Shoeibi, Afshin</creatorcontrib><creatorcontrib>Sadeghi, Delaram</creatorcontrib><creatorcontrib>Ghaasemi, Navid</creatorcontrib><creatorcontrib>Jafari, Mahboobeh</creatorcontrib><creatorcontrib>Moridian, Parisa</creatorcontrib><creatorcontrib>Khadem, Ali</creatorcontrib><creatorcontrib>Alizadehsani, Roohallah</creatorcontrib><creatorcontrib>Zare, Assef</creatorcontrib><creatorcontrib>Kong, Yinan</creatorcontrib><creatorcontrib>Khosravi, Abbas</creatorcontrib><creatorcontrib>Nahavandi, Saeid</creatorcontrib><creatorcontrib>Hussain, Sadiq</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><creatorcontrib>Berk, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khodatars, Marjane</au><au>Shoeibi, Afshin</au><au>Sadeghi, Delaram</au><au>Ghaasemi, Navid</au><au>Jafari, Mahboobeh</au><au>Moridian, Parisa</au><au>Khadem, Ali</au><au>Alizadehsani, Roohallah</au><au>Zare, Assef</au><au>Kong, Yinan</au><au>Khosravi, Abbas</au><au>Nahavandi, Saeid</au><au>Hussain, Sadiq</au><au>Acharya, U. Rajendra</au><au>Berk, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2021-12</date><risdate>2021</risdate><volume>139</volume><spage>104949</spage><epage>104949</epage><pages>104949-104949</pages><artnum>104949</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures. AI techniques comprise traditional machine learning (ML) approaches and deep learning (DL) techniques. Conventional ML methods employ various feature extraction and classification techniques, but in DL, the process of feature extraction and classification is accomplished intelligently and integrally. DL methods for diagnosis of ASD have been focused on neuroimaging-based approaches. Neuroimaging techniques are non-invasive disease markers potentially useful for ASD diagnosis. Structural and functional neuroimaging techniques provide physicians substantial information about the structure (anatomy and structural connectivity) and function (activity and functional connectivity) of the brain. Due to the intricate structure and function of the brain, proposing optimum procedures for ASD diagnosis with neuroimaging data without exploiting powerful AI techniques like DL may be challenging. In this paper, studies conducted with the aid of DL networks to distinguish ASD are investigated. Rehabilitation tools provided for supporting ASD patients utilizing DL networks are also assessed. Finally, we will present important challenges in the automated detection and rehabilitation of ASD and propose some future works.
•A review of the ASD diagnosis using deep learning methods are provided.•Various neuroimaging modalities for ASD diagnosis are presented.•Advantages and disadvantages of neuroimaging modalities for ASD diagnosis are introduced. .•Papers published from 2016 are reviewed and structured in tabular form.•Challenges and future works for ASD detection are discussed comprehensively.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>34737139</pmid><doi>10.1016/j.compbiomed.2021.104949</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8517-0046</orcidid><orcidid>https://orcid.org/0000-0001-7964-4033</orcidid><orcidid>https://orcid.org/0000-0001-6830-0286</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2021-12, Vol.139, p.104949-104949, Article 104949 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2594291326 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Algorithms Artificial Intelligence Autism Autism spectrum disorder Autism Spectrum Disorder - diagnostic imaging Automation Brain Classification Datasets Deep Learning Diagnosis Feature extraction Humans Learning algorithms Machine learning Magnetic Resonance Imaging Medical diagnosis Medical imaging Mental disorders Neural networks Neuroimaging Neuroscience Physicians Rehabilitation Spectrum analysis Structure-function relationships Transcranial magnetic stimulation |
title | Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20neuroimaging-based%20diagnosis%20and%20rehabilitation%20of%20Autism%20Spectrum%20Disorder:%20A%20review&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Khodatars,%20Marjane&rft.date=2021-12&rft.volume=139&rft.spage=104949&rft.epage=104949&rft.pages=104949-104949&rft.artnum=104949&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2021.104949&rft_dat=%3Cproquest_cross%3E2604005681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604005681&rft_id=info:pmid/34737139&rft_els_id=S0010482521007435&rfr_iscdi=true |