Cluster Fragments in Amorphous Phosphorus and their Evolution under Pressure

Amorphous phosphorus (a‐P) has long attracted interest because of its complex atomic structure, and more recently as an anode material for batteries. However, accurately describing and understanding a‐P at the atomistic level remains a challenge. Here, it is shown that large‐scale molecular‐dynamics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-02, Vol.34 (5), p.e2107515-n/a
Hauptverfasser: Zhou, Yuxing, Kirkpatrick, William, Deringer, Volker L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page e2107515
container_title Advanced materials (Weinheim)
container_volume 34
creator Zhou, Yuxing
Kirkpatrick, William
Deringer, Volker L.
description Amorphous phosphorus (a‐P) has long attracted interest because of its complex atomic structure, and more recently as an anode material for batteries. However, accurately describing and understanding a‐P at the atomistic level remains a challenge. Here, it is shown that large‐scale molecular‐dynamics simulations, enabled by a machine‐learning (ML)‐based interatomic potential for phosphorus, can give new insights into the atomic structure of a‐P and how this structure changes under pressure. The structural model so obtained contains abundant five‐membered rings, as well as more complex seven‐ and eight‐atom clusters. Changes in the simulated first sharp diffraction peak during compression and decompression indicate a hysteresis in the recovery of medium‐range order. An analysis of cluster fragments, large rings, and voids suggests that moderate pressure (up to about 5 GPa) does not break the connectivity of clusters, but higher pressure does. The work provides a starting point for further computational studies of the structure and properties of a‐P, and more generally it exemplifies how ML‐driven modeling can accelerate the understanding of disordered functional materials. Machine‐learning‐driven simulations provide new insight into the structure of amorphous phosphorus. The structural model so obtained contains abundant five‐membered rings and more complex cluster fragments. The simulation results help to understand previous experimental observations at ambient and high pressure, and they provide an example of the emerging application of machine‐learned potentials to complex functional materials.
doi_str_mv 10.1002/adma.202107515
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2593603080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624897359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-f97f5cb6b9cbe71a26192a25420a8fdb449f6884f3d9645d3cb15e2fb4c72b2b3</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EglJYGVEkFpYWfyceo9ICUhEdYLbsxKGpkrjYMaj_HlctRWJhem849-roAnCF4BhBiO9U2aoxhhjBlCF2BAaIYTSiULBjMICCsJHgNDsD596vIISCQ34KzghNCaUUDcB80gTfG5fMnHpvTdf7pO6SvLVuvbTBJ4ul9fFz8VVdmfRLU7tk-mmb0Ne2S0JXxuzCGe-DMxfgpFKNN5f7OwRvs-nr5HE0f3l4muTzUUFRNKpEWrFCcy0KbVKkMEcCK8wohiqrSk2pqHiW0YqUUZ6VpNCIGVxpWqRYY02G4HbXu3b2Ixjfy7b2hWka1ZkoLTEThEMCMxjRmz_oygbXRTuJOaaZSEmEh2C8owpnvXemkmtXt8ptJIJyu7Pc7iwPO8fA9b426NaUB_xn2AiIHfBVN2bzT53M75_z3_Jv94-JVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624897359</pqid></control><display><type>article</type><title>Cluster Fragments in Amorphous Phosphorus and their Evolution under Pressure</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Yuxing ; Kirkpatrick, William ; Deringer, Volker L.</creator><creatorcontrib>Zhou, Yuxing ; Kirkpatrick, William ; Deringer, Volker L.</creatorcontrib><description>Amorphous phosphorus (a‐P) has long attracted interest because of its complex atomic structure, and more recently as an anode material for batteries. However, accurately describing and understanding a‐P at the atomistic level remains a challenge. Here, it is shown that large‐scale molecular‐dynamics simulations, enabled by a machine‐learning (ML)‐based interatomic potential for phosphorus, can give new insights into the atomic structure of a‐P and how this structure changes under pressure. The structural model so obtained contains abundant five‐membered rings, as well as more complex seven‐ and eight‐atom clusters. Changes in the simulated first sharp diffraction peak during compression and decompression indicate a hysteresis in the recovery of medium‐range order. An analysis of cluster fragments, large rings, and voids suggests that moderate pressure (up to about 5 GPa) does not break the connectivity of clusters, but higher pressure does. The work provides a starting point for further computational studies of the structure and properties of a‐P, and more generally it exemplifies how ML‐driven modeling can accelerate the understanding of disordered functional materials. Machine‐learning‐driven simulations provide new insight into the structure of amorphous phosphorus. The structural model so obtained contains abundant five‐membered rings and more complex cluster fragments. The simulation results help to understand previous experimental observations at ambient and high pressure, and they provide an example of the emerging application of machine‐learned potentials to complex functional materials.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202107515</identifier><identifier>PMID: 34734441</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>amorphous solids ; Anodes ; Atomic properties ; Atomic structure ; Clusters ; Electrode materials ; Fragments ; Functional materials ; machine learning ; materials modeling ; molecular dynamics ; Phosphorus ; Structural models</subject><ispartof>Advanced materials (Weinheim), 2022-02, Vol.34 (5), p.e2107515-n/a</ispartof><rights>2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-f97f5cb6b9cbe71a26192a25420a8fdb449f6884f3d9645d3cb15e2fb4c72b2b3</citedby><cites>FETCH-LOGICAL-c4135-f97f5cb6b9cbe71a26192a25420a8fdb449f6884f3d9645d3cb15e2fb4c72b2b3</cites><orcidid>0000-0001-6873-0278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202107515$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202107515$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34734441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yuxing</creatorcontrib><creatorcontrib>Kirkpatrick, William</creatorcontrib><creatorcontrib>Deringer, Volker L.</creatorcontrib><title>Cluster Fragments in Amorphous Phosphorus and their Evolution under Pressure</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Amorphous phosphorus (a‐P) has long attracted interest because of its complex atomic structure, and more recently as an anode material for batteries. However, accurately describing and understanding a‐P at the atomistic level remains a challenge. Here, it is shown that large‐scale molecular‐dynamics simulations, enabled by a machine‐learning (ML)‐based interatomic potential for phosphorus, can give new insights into the atomic structure of a‐P and how this structure changes under pressure. The structural model so obtained contains abundant five‐membered rings, as well as more complex seven‐ and eight‐atom clusters. Changes in the simulated first sharp diffraction peak during compression and decompression indicate a hysteresis in the recovery of medium‐range order. An analysis of cluster fragments, large rings, and voids suggests that moderate pressure (up to about 5 GPa) does not break the connectivity of clusters, but higher pressure does. The work provides a starting point for further computational studies of the structure and properties of a‐P, and more generally it exemplifies how ML‐driven modeling can accelerate the understanding of disordered functional materials. Machine‐learning‐driven simulations provide new insight into the structure of amorphous phosphorus. The structural model so obtained contains abundant five‐membered rings and more complex cluster fragments. The simulation results help to understand previous experimental observations at ambient and high pressure, and they provide an example of the emerging application of machine‐learned potentials to complex functional materials.</description><subject>amorphous solids</subject><subject>Anodes</subject><subject>Atomic properties</subject><subject>Atomic structure</subject><subject>Clusters</subject><subject>Electrode materials</subject><subject>Fragments</subject><subject>Functional materials</subject><subject>machine learning</subject><subject>materials modeling</subject><subject>molecular dynamics</subject><subject>Phosphorus</subject><subject>Structural models</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkD1PwzAURS0EglJYGVEkFpYWfyceo9ICUhEdYLbsxKGpkrjYMaj_HlctRWJhem849-roAnCF4BhBiO9U2aoxhhjBlCF2BAaIYTSiULBjMICCsJHgNDsD596vIISCQ34KzghNCaUUDcB80gTfG5fMnHpvTdf7pO6SvLVuvbTBJ4ul9fFz8VVdmfRLU7tk-mmb0Ne2S0JXxuzCGe-DMxfgpFKNN5f7OwRvs-nr5HE0f3l4muTzUUFRNKpEWrFCcy0KbVKkMEcCK8wohiqrSk2pqHiW0YqUUZ6VpNCIGVxpWqRYY02G4HbXu3b2Ixjfy7b2hWka1ZkoLTEThEMCMxjRmz_oygbXRTuJOaaZSEmEh2C8owpnvXemkmtXt8ptJIJyu7Pc7iwPO8fA9b426NaUB_xn2AiIHfBVN2bzT53M75_z3_Jv94-JVQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Zhou, Yuxing</creator><creator>Kirkpatrick, William</creator><creator>Deringer, Volker L.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6873-0278</orcidid></search><sort><creationdate>20220201</creationdate><title>Cluster Fragments in Amorphous Phosphorus and their Evolution under Pressure</title><author>Zhou, Yuxing ; Kirkpatrick, William ; Deringer, Volker L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-f97f5cb6b9cbe71a26192a25420a8fdb449f6884f3d9645d3cb15e2fb4c72b2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>amorphous solids</topic><topic>Anodes</topic><topic>Atomic properties</topic><topic>Atomic structure</topic><topic>Clusters</topic><topic>Electrode materials</topic><topic>Fragments</topic><topic>Functional materials</topic><topic>machine learning</topic><topic>materials modeling</topic><topic>molecular dynamics</topic><topic>Phosphorus</topic><topic>Structural models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yuxing</creatorcontrib><creatorcontrib>Kirkpatrick, William</creatorcontrib><creatorcontrib>Deringer, Volker L.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yuxing</au><au>Kirkpatrick, William</au><au>Deringer, Volker L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster Fragments in Amorphous Phosphorus and their Evolution under Pressure</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>34</volume><issue>5</issue><spage>e2107515</spage><epage>n/a</epage><pages>e2107515-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Amorphous phosphorus (a‐P) has long attracted interest because of its complex atomic structure, and more recently as an anode material for batteries. However, accurately describing and understanding a‐P at the atomistic level remains a challenge. Here, it is shown that large‐scale molecular‐dynamics simulations, enabled by a machine‐learning (ML)‐based interatomic potential for phosphorus, can give new insights into the atomic structure of a‐P and how this structure changes under pressure. The structural model so obtained contains abundant five‐membered rings, as well as more complex seven‐ and eight‐atom clusters. Changes in the simulated first sharp diffraction peak during compression and decompression indicate a hysteresis in the recovery of medium‐range order. An analysis of cluster fragments, large rings, and voids suggests that moderate pressure (up to about 5 GPa) does not break the connectivity of clusters, but higher pressure does. The work provides a starting point for further computational studies of the structure and properties of a‐P, and more generally it exemplifies how ML‐driven modeling can accelerate the understanding of disordered functional materials. Machine‐learning‐driven simulations provide new insight into the structure of amorphous phosphorus. The structural model so obtained contains abundant five‐membered rings and more complex cluster fragments. The simulation results help to understand previous experimental observations at ambient and high pressure, and they provide an example of the emerging application of machine‐learned potentials to complex functional materials.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34734441</pmid><doi>10.1002/adma.202107515</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6873-0278</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-02, Vol.34 (5), p.e2107515-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2593603080
source Wiley Online Library Journals Frontfile Complete
subjects amorphous solids
Anodes
Atomic properties
Atomic structure
Clusters
Electrode materials
Fragments
Functional materials
machine learning
materials modeling
molecular dynamics
Phosphorus
Structural models
title Cluster Fragments in Amorphous Phosphorus and their Evolution under Pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster%20Fragments%20in%20Amorphous%20Phosphorus%20and%20their%20Evolution%20under%20Pressure&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhou,%20Yuxing&rft.date=2022-02-01&rft.volume=34&rft.issue=5&rft.spage=e2107515&rft.epage=n/a&rft.pages=e2107515-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202107515&rft_dat=%3Cproquest_cross%3E2624897359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624897359&rft_id=info:pmid/34734441&rfr_iscdi=true