Glancing angle deposition of large-scale helical Si@Cu3Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries
Silicon (Si) anode materials have attracted substantial interest due to their high theoretical capacity. Here, the growth of helical Si@Cu3Si nanorod arrays via glancing angle deposition (GLAD) followed by an annealing process is reported. Pre-deposited Cu atoms were driven into Si-nanorods and succ...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2021-11, Vol.13 (44), p.18626-18631 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18631 |
---|---|
container_issue | 44 |
container_start_page | 18626 |
container_title | Nanoscale |
container_volume | 13 |
creator | Hsiao-Chien, Wang Hsu, Chih-Ming Gu, Bingni Chia-Chen, Chung Shu-Chi, Wu Ilango, P Robert Huang, Jian-Shiou Wen-Chun, Yen Yu-Lun Chueh |
description | Silicon (Si) anode materials have attracted substantial interest due to their high theoretical capacity. Here, the growth of helical Si@Cu3Si nanorod arrays via glancing angle deposition (GLAD) followed by an annealing process is reported. Pre-deposited Cu atoms were driven into Si-nanorods and successfully reacted with Si to form a Si–Cu alloy at a high temperature. By varying the rotation rate and annealing temperature, the resultant Si@Cu3Si nanorod arrays showed a reasonably accessible surface area with precise control spacing behavior in favor of accommodating Si volume expansion. Meanwhile, the Si@Cu3Si anode materials showed higher electrical conductivity, facilitating Li+ ion diffusion and electron transfer. The Si@Cu3Si nanorod arrays in half cells exhibited a volumetric capacity as high as 3350.1 mA h cm−3 at a rate of 0.25 C and could maintain 1706.7 mA h cm−3 after 100 cycles, which are superior to those of pristine Si materials. This facile and innovative technology provided new insights into the development of Si-based electrode materials. |
doi_str_mv | 10.1039/d1nr05297g |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2593595511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593595511</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-755f906f9bb13348f26d16f5ecfd590fb9568500f165e445dc048f3920e72cf33</originalsourceid><addsrcrecordid>eNpdkL1OwzAURi0EEqWw8ASWWFgC_omdegNVtCBVYijMleNcJ65SO9jJwAPw3rgCMTDdT7pH5159CF1TckcJV_cN9ZEIpqr2BM0YKUnBecVO_7Isz9FFSntCpOKSz9DXutfeON9i7dsecANDSG50weNgca9jC0UyOm866F0OeOselhPfOuy1DzE0WMeoPxO2IeLOtV0xQMz5kLWQpaGBhJ3HEUx3tOk6uzauOF6o9ThCdJAu0ZnVfYKr3zlH76unt-VzsXldvywfN8XAqByLSgiriLSqrinn5cIy2VBpBRjbCEVsrYRcCEIslQLKUjSGZIgrRqBixnI-R7c_3iGGjwnSuDu4ZKDPHUCY0o4JxYUSgtKM3vxD92GKPn93pBaSUyoY_wYkmnE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598631152</pqid></control><display><type>article</type><title>Glancing angle deposition of large-scale helical Si@Cu3Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Hsiao-Chien, Wang ; Hsu, Chih-Ming ; Gu, Bingni ; Chia-Chen, Chung ; Shu-Chi, Wu ; Ilango, P Robert ; Huang, Jian-Shiou ; Wen-Chun, Yen ; Yu-Lun Chueh</creator><creatorcontrib>Hsiao-Chien, Wang ; Hsu, Chih-Ming ; Gu, Bingni ; Chia-Chen, Chung ; Shu-Chi, Wu ; Ilango, P Robert ; Huang, Jian-Shiou ; Wen-Chun, Yen ; Yu-Lun Chueh</creatorcontrib><description>Silicon (Si) anode materials have attracted substantial interest due to their high theoretical capacity. Here, the growth of helical Si@Cu3Si nanorod arrays via glancing angle deposition (GLAD) followed by an annealing process is reported. Pre-deposited Cu atoms were driven into Si-nanorods and successfully reacted with Si to form a Si–Cu alloy at a high temperature. By varying the rotation rate and annealing temperature, the resultant Si@Cu3Si nanorod arrays showed a reasonably accessible surface area with precise control spacing behavior in favor of accommodating Si volume expansion. Meanwhile, the Si@Cu3Si anode materials showed higher electrical conductivity, facilitating Li+ ion diffusion and electron transfer. The Si@Cu3Si nanorod arrays in half cells exhibited a volumetric capacity as high as 3350.1 mA h cm−3 at a rate of 0.25 C and could maintain 1706.7 mA h cm−3 after 100 cycles, which are superior to those of pristine Si materials. This facile and innovative technology provided new insights into the development of Si-based electrode materials.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr05297g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Annealing ; Anodes ; Arrays ; Copper base alloys ; Deposition ; Electrical resistivity ; Electrode materials ; Electron transfer ; Heat resistant alloys ; High temperature ; Ion diffusion ; Lithium-ion batteries ; Nanorods ; Rechargeable batteries ; Silicon</subject><ispartof>Nanoscale, 2021-11, Vol.13 (44), p.18626-18631</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hsiao-Chien, Wang</creatorcontrib><creatorcontrib>Hsu, Chih-Ming</creatorcontrib><creatorcontrib>Gu, Bingni</creatorcontrib><creatorcontrib>Chia-Chen, Chung</creatorcontrib><creatorcontrib>Shu-Chi, Wu</creatorcontrib><creatorcontrib>Ilango, P Robert</creatorcontrib><creatorcontrib>Huang, Jian-Shiou</creatorcontrib><creatorcontrib>Wen-Chun, Yen</creatorcontrib><creatorcontrib>Yu-Lun Chueh</creatorcontrib><title>Glancing angle deposition of large-scale helical Si@Cu3Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries</title><title>Nanoscale</title><description>Silicon (Si) anode materials have attracted substantial interest due to their high theoretical capacity. Here, the growth of helical Si@Cu3Si nanorod arrays via glancing angle deposition (GLAD) followed by an annealing process is reported. Pre-deposited Cu atoms were driven into Si-nanorods and successfully reacted with Si to form a Si–Cu alloy at a high temperature. By varying the rotation rate and annealing temperature, the resultant Si@Cu3Si nanorod arrays showed a reasonably accessible surface area with precise control spacing behavior in favor of accommodating Si volume expansion. Meanwhile, the Si@Cu3Si anode materials showed higher electrical conductivity, facilitating Li+ ion diffusion and electron transfer. The Si@Cu3Si nanorod arrays in half cells exhibited a volumetric capacity as high as 3350.1 mA h cm−3 at a rate of 0.25 C and could maintain 1706.7 mA h cm−3 after 100 cycles, which are superior to those of pristine Si materials. This facile and innovative technology provided new insights into the development of Si-based electrode materials.</description><subject>Annealing</subject><subject>Anodes</subject><subject>Arrays</subject><subject>Copper base alloys</subject><subject>Deposition</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Electron transfer</subject><subject>Heat resistant alloys</subject><subject>High temperature</subject><subject>Ion diffusion</subject><subject>Lithium-ion batteries</subject><subject>Nanorods</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkL1OwzAURi0EEqWw8ASWWFgC_omdegNVtCBVYijMleNcJ65SO9jJwAPw3rgCMTDdT7pH5159CF1TckcJV_cN9ZEIpqr2BM0YKUnBecVO_7Isz9FFSntCpOKSz9DXutfeON9i7dsecANDSG50weNgca9jC0UyOm866F0OeOselhPfOuy1DzE0WMeoPxO2IeLOtV0xQMz5kLWQpaGBhJ3HEUx3tOk6uzauOF6o9ThCdJAu0ZnVfYKr3zlH76unt-VzsXldvywfN8XAqByLSgiriLSqrinn5cIy2VBpBRjbCEVsrYRcCEIslQLKUjSGZIgrRqBixnI-R7c_3iGGjwnSuDu4ZKDPHUCY0o4JxYUSgtKM3vxD92GKPn93pBaSUyoY_wYkmnE4</recordid><startdate>20211118</startdate><enddate>20211118</enddate><creator>Hsiao-Chien, Wang</creator><creator>Hsu, Chih-Ming</creator><creator>Gu, Bingni</creator><creator>Chia-Chen, Chung</creator><creator>Shu-Chi, Wu</creator><creator>Ilango, P Robert</creator><creator>Huang, Jian-Shiou</creator><creator>Wen-Chun, Yen</creator><creator>Yu-Lun Chueh</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20211118</creationdate><title>Glancing angle deposition of large-scale helical Si@Cu3Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries</title><author>Hsiao-Chien, Wang ; Hsu, Chih-Ming ; Gu, Bingni ; Chia-Chen, Chung ; Shu-Chi, Wu ; Ilango, P Robert ; Huang, Jian-Shiou ; Wen-Chun, Yen ; Yu-Lun Chueh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-755f906f9bb13348f26d16f5ecfd590fb9568500f165e445dc048f3920e72cf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annealing</topic><topic>Anodes</topic><topic>Arrays</topic><topic>Copper base alloys</topic><topic>Deposition</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Electron transfer</topic><topic>Heat resistant alloys</topic><topic>High temperature</topic><topic>Ion diffusion</topic><topic>Lithium-ion batteries</topic><topic>Nanorods</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsiao-Chien, Wang</creatorcontrib><creatorcontrib>Hsu, Chih-Ming</creatorcontrib><creatorcontrib>Gu, Bingni</creatorcontrib><creatorcontrib>Chia-Chen, Chung</creatorcontrib><creatorcontrib>Shu-Chi, Wu</creatorcontrib><creatorcontrib>Ilango, P Robert</creatorcontrib><creatorcontrib>Huang, Jian-Shiou</creatorcontrib><creatorcontrib>Wen-Chun, Yen</creatorcontrib><creatorcontrib>Yu-Lun Chueh</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsiao-Chien, Wang</au><au>Hsu, Chih-Ming</au><au>Gu, Bingni</au><au>Chia-Chen, Chung</au><au>Shu-Chi, Wu</au><au>Ilango, P Robert</au><au>Huang, Jian-Shiou</au><au>Wen-Chun, Yen</au><au>Yu-Lun Chueh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glancing angle deposition of large-scale helical Si@Cu3Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries</atitle><jtitle>Nanoscale</jtitle><date>2021-11-18</date><risdate>2021</risdate><volume>13</volume><issue>44</issue><spage>18626</spage><epage>18631</epage><pages>18626-18631</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Silicon (Si) anode materials have attracted substantial interest due to their high theoretical capacity. Here, the growth of helical Si@Cu3Si nanorod arrays via glancing angle deposition (GLAD) followed by an annealing process is reported. Pre-deposited Cu atoms were driven into Si-nanorods and successfully reacted with Si to form a Si–Cu alloy at a high temperature. By varying the rotation rate and annealing temperature, the resultant Si@Cu3Si nanorod arrays showed a reasonably accessible surface area with precise control spacing behavior in favor of accommodating Si volume expansion. Meanwhile, the Si@Cu3Si anode materials showed higher electrical conductivity, facilitating Li+ ion diffusion and electron transfer. The Si@Cu3Si nanorod arrays in half cells exhibited a volumetric capacity as high as 3350.1 mA h cm−3 at a rate of 0.25 C and could maintain 1706.7 mA h cm−3 after 100 cycles, which are superior to those of pristine Si materials. This facile and innovative technology provided new insights into the development of Si-based electrode materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nr05297g</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2021-11, Vol.13 (44), p.18626-18631 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2593595511 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Annealing Anodes Arrays Copper base alloys Deposition Electrical resistivity Electrode materials Electron transfer Heat resistant alloys High temperature Ion diffusion Lithium-ion batteries Nanorods Rechargeable batteries Silicon |
title | Glancing angle deposition of large-scale helical Si@Cu3Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glancing%20angle%20deposition%20of%20large-scale%20helical%20Si@Cu3Si%20nanorod%20arrays%20for%20high-performance%20anodes%20in%20rechargeable%20Li-ion%20batteries&rft.jtitle=Nanoscale&rft.au=Hsiao-Chien,%20Wang&rft.date=2021-11-18&rft.volume=13&rft.issue=44&rft.spage=18626&rft.epage=18631&rft.pages=18626-18631&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr05297g&rft_dat=%3Cproquest%3E2593595511%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598631152&rft_id=info:pmid/&rfr_iscdi=true |