Process optimization of copper MOCVD using modeling experimental design

An optimisation of copper CVD was carried out through the use of screening and modeling experimental designs. The copper precursor [Cu(hfac)tmvs] was delivered through a bubbler using hydrogen as carrier gas. Water vapour was used as reactant. Films were deposited on sputtered titanium nitride subst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 1995-10, Vol.91 (1), p.129-133
Hauptverfasser: Mouche, Marie-José, Mermet, Jean-Luc, Pires, Fabrice, Richard, Emmanuel, Torres, Joaquin, Palleau, Jean, Braud, François
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1
container_start_page 129
container_title Applied surface science
container_volume 91
creator Mouche, Marie-José
Mermet, Jean-Luc
Pires, Fabrice
Richard, Emmanuel
Torres, Joaquin
Palleau, Jean
Braud, François
description An optimisation of copper CVD was carried out through the use of screening and modeling experimental designs. The copper precursor [Cu(hfac)tmvs] was delivered through a bubbler using hydrogen as carrier gas. Water vapour was used as reactant. Films were deposited on sputtered titanium nitride substrate. The influence of substrate temperature, carrier gas flow, water flow, water injection time and bubbler pressure were studied and led to experimental laws, which show the dependence of resistivity and deposition rate with any of these parameters. It was found that the optimum procedure was to inject water during a limited time at the beginning of the growth (typically 2 minutes, for an overall deposition time of 30 minutes). This improves the nucleation but avoids the oxidation of the film. Consequently, the resistivity is very low and the deposition rate is relatively high. For the optimum working point, in terms of resistivity (1.9 μΩ · cm after anneal), X-ray photoelectron spectroscopy (XPS) depth profiling indicates a pure copper phase. The adhesion on the TiN substrate was excellent according to the “Scotch tape” test.
doi_str_mv 10.1016/0169-4332(95)00107-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25933419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0169433295001077</els_id><sourcerecordid>25933419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-581cb919eec6128a1d0ff25d708a2c92ebeafcd3170bdf2f7cf2e1015911d2a43</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoPPPQkeqjmo9k2F0FWXYWV9aBeQzZ5WSJtU5NW1F9v6opHD4_3YGYeM4PQMcHnBJPZRRqRF4zRU8HPMCa4zMsdNCFVyXLOq2IXTf4o--ggxtdEogmdoMVj8BpizHzXu8Z9qd75NvM2077rIGQPq_nLdTZE126yxhuoxwM-EuQaaHtVZwai27SHaM-qOsLR756i59ubp_ldvlwt7udXy1wXmPQ5r4heCyIA9Cw5UMRgayk3Ja4U1YLCGpTVhpESr42lttSWQsrIBSGGqoJN0cn2bxf82wCxl42LGupateCHKCkXjBVEJGKxJergYwxgZZcsq_ApCZZja3KsRI6VSMHlT2uyTLLLrQxSiHcHQUbtoNVgXADdS-Pd_w--AcsjdF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25933419</pqid></control><display><type>article</type><title>Process optimization of copper MOCVD using modeling experimental design</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mouche, Marie-José ; Mermet, Jean-Luc ; Pires, Fabrice ; Richard, Emmanuel ; Torres, Joaquin ; Palleau, Jean ; Braud, François</creator><creatorcontrib>Mouche, Marie-José ; Mermet, Jean-Luc ; Pires, Fabrice ; Richard, Emmanuel ; Torres, Joaquin ; Palleau, Jean ; Braud, François</creatorcontrib><description>An optimisation of copper CVD was carried out through the use of screening and modeling experimental designs. The copper precursor [Cu(hfac)tmvs] was delivered through a bubbler using hydrogen as carrier gas. Water vapour was used as reactant. Films were deposited on sputtered titanium nitride substrate. The influence of substrate temperature, carrier gas flow, water flow, water injection time and bubbler pressure were studied and led to experimental laws, which show the dependence of resistivity and deposition rate with any of these parameters. It was found that the optimum procedure was to inject water during a limited time at the beginning of the growth (typically 2 minutes, for an overall deposition time of 30 minutes). This improves the nucleation but avoids the oxidation of the film. Consequently, the resistivity is very low and the deposition rate is relatively high. For the optimum working point, in terms of resistivity (1.9 μΩ · cm after anneal), X-ray photoelectron spectroscopy (XPS) depth profiling indicates a pure copper phase. The adhesion on the TiN substrate was excellent according to the “Scotch tape” test.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/0169-4332(95)00107-7</identifier><language>eng</language><publisher>Elsevier B.V</publisher><ispartof>Applied surface science, 1995-10, Vol.91 (1), p.129-133</ispartof><rights>1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-581cb919eec6128a1d0ff25d708a2c92ebeafcd3170bdf2f7cf2e1015911d2a43</citedby><cites>FETCH-LOGICAL-c401t-581cb919eec6128a1d0ff25d708a2c92ebeafcd3170bdf2f7cf2e1015911d2a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0169-4332(95)00107-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mouche, Marie-José</creatorcontrib><creatorcontrib>Mermet, Jean-Luc</creatorcontrib><creatorcontrib>Pires, Fabrice</creatorcontrib><creatorcontrib>Richard, Emmanuel</creatorcontrib><creatorcontrib>Torres, Joaquin</creatorcontrib><creatorcontrib>Palleau, Jean</creatorcontrib><creatorcontrib>Braud, François</creatorcontrib><title>Process optimization of copper MOCVD using modeling experimental design</title><title>Applied surface science</title><description>An optimisation of copper CVD was carried out through the use of screening and modeling experimental designs. The copper precursor [Cu(hfac)tmvs] was delivered through a bubbler using hydrogen as carrier gas. Water vapour was used as reactant. Films were deposited on sputtered titanium nitride substrate. The influence of substrate temperature, carrier gas flow, water flow, water injection time and bubbler pressure were studied and led to experimental laws, which show the dependence of resistivity and deposition rate with any of these parameters. It was found that the optimum procedure was to inject water during a limited time at the beginning of the growth (typically 2 minutes, for an overall deposition time of 30 minutes). This improves the nucleation but avoids the oxidation of the film. Consequently, the resistivity is very low and the deposition rate is relatively high. For the optimum working point, in terms of resistivity (1.9 μΩ · cm after anneal), X-ray photoelectron spectroscopy (XPS) depth profiling indicates a pure copper phase. The adhesion on the TiN substrate was excellent according to the “Scotch tape” test.</description><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoPPPQkeqjmo9k2F0FWXYWV9aBeQzZ5WSJtU5NW1F9v6opHD4_3YGYeM4PQMcHnBJPZRRqRF4zRU8HPMCa4zMsdNCFVyXLOq2IXTf4o--ggxtdEogmdoMVj8BpizHzXu8Z9qd75NvM2077rIGQPq_nLdTZE126yxhuoxwM-EuQaaHtVZwai27SHaM-qOsLR756i59ubp_ldvlwt7udXy1wXmPQ5r4heCyIA9Cw5UMRgayk3Ja4U1YLCGpTVhpESr42lttSWQsrIBSGGqoJN0cn2bxf82wCxl42LGupateCHKCkXjBVEJGKxJergYwxgZZcsq_ApCZZja3KsRI6VSMHlT2uyTLLLrQxSiHcHQUbtoNVgXADdS-Pd_w--AcsjdF8</recordid><startdate>19951001</startdate><enddate>19951001</enddate><creator>Mouche, Marie-José</creator><creator>Mermet, Jean-Luc</creator><creator>Pires, Fabrice</creator><creator>Richard, Emmanuel</creator><creator>Torres, Joaquin</creator><creator>Palleau, Jean</creator><creator>Braud, François</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19951001</creationdate><title>Process optimization of copper MOCVD using modeling experimental design</title><author>Mouche, Marie-José ; Mermet, Jean-Luc ; Pires, Fabrice ; Richard, Emmanuel ; Torres, Joaquin ; Palleau, Jean ; Braud, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-581cb919eec6128a1d0ff25d708a2c92ebeafcd3170bdf2f7cf2e1015911d2a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mouche, Marie-José</creatorcontrib><creatorcontrib>Mermet, Jean-Luc</creatorcontrib><creatorcontrib>Pires, Fabrice</creatorcontrib><creatorcontrib>Richard, Emmanuel</creatorcontrib><creatorcontrib>Torres, Joaquin</creatorcontrib><creatorcontrib>Palleau, Jean</creatorcontrib><creatorcontrib>Braud, François</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mouche, Marie-José</au><au>Mermet, Jean-Luc</au><au>Pires, Fabrice</au><au>Richard, Emmanuel</au><au>Torres, Joaquin</au><au>Palleau, Jean</au><au>Braud, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process optimization of copper MOCVD using modeling experimental design</atitle><jtitle>Applied surface science</jtitle><date>1995-10-01</date><risdate>1995</risdate><volume>91</volume><issue>1</issue><spage>129</spage><epage>133</epage><pages>129-133</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>An optimisation of copper CVD was carried out through the use of screening and modeling experimental designs. The copper precursor [Cu(hfac)tmvs] was delivered through a bubbler using hydrogen as carrier gas. Water vapour was used as reactant. Films were deposited on sputtered titanium nitride substrate. The influence of substrate temperature, carrier gas flow, water flow, water injection time and bubbler pressure were studied and led to experimental laws, which show the dependence of resistivity and deposition rate with any of these parameters. It was found that the optimum procedure was to inject water during a limited time at the beginning of the growth (typically 2 minutes, for an overall deposition time of 30 minutes). This improves the nucleation but avoids the oxidation of the film. Consequently, the resistivity is very low and the deposition rate is relatively high. For the optimum working point, in terms of resistivity (1.9 μΩ · cm after anneal), X-ray photoelectron spectroscopy (XPS) depth profiling indicates a pure copper phase. The adhesion on the TiN substrate was excellent according to the “Scotch tape” test.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0169-4332(95)00107-7</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 1995-10, Vol.91 (1), p.129-133
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_25933419
source Access via ScienceDirect (Elsevier)
title Process optimization of copper MOCVD using modeling experimental design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20optimization%20of%20copper%20MOCVD%20using%20modeling%20experimental%20design&rft.jtitle=Applied%20surface%20science&rft.au=Mouche,%20Marie-Jos%C3%A9&rft.date=1995-10-01&rft.volume=91&rft.issue=1&rft.spage=129&rft.epage=133&rft.pages=129-133&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/0169-4332(95)00107-7&rft_dat=%3Cproquest_cross%3E25933419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25933419&rft_id=info:pmid/&rft_els_id=0169433295001077&rfr_iscdi=true