Zinc transport in rice: how to balance optimal plant requirements and human nutrition
Abstract Zinc (Zn) is an essential micronutrient for both plants and animals, while its deficiency in crops and humans is a global problem that affects both crop productivity and human health. Since plants and humans differ in their Zn requirements, it is crucial to balance plant nutrition and human...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 2022-03, Vol.73 (6), p.1800-1808 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1808 |
---|---|
container_issue | 6 |
container_start_page | 1800 |
container_title | Journal of experimental botany |
container_volume | 73 |
creator | Huang, Sheng Yamaji, Naoki Feng Ma, Jian |
description | Abstract
Zinc (Zn) is an essential micronutrient for both plants and animals, while its deficiency in crops and humans is a global problem that affects both crop productivity and human health. Since plants and humans differ in their Zn requirements, it is crucial to balance plant nutrition and human nutrition for Zn. In this review, we focus on the transport system of Zn from soil to grain in rice (Oryza sativa), which is a major dietary source of Zn for people subsiding on rice-based diets. We describe transporters belonging to the different families that are involved in the uptake, vacuolar sequestration, root-to-shoot translocation, and distribution of Zn, and discuss their mechanisms of regulation. We give examples for enhancing Zn accumulation and bioavailability in rice grains through the manipulation of genes that are highly expressed in the nodes, where Zn is deposited at high concentrations. Finally, we provide our perspectives on breeding rice cultivars with both increased tolerance to Zn-deficiency stress and high Zn density in the grains.
This review describes the transporters involved in the uptake, vacuolar sequestration, root-to-shoot translocation, and distribution of zinc in rice, and discusses how to balance optimal plant nutrition and human nutrition for zinc. |
doi_str_mv | 10.1093/jxb/erab478 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2593045580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jxb/erab478</oup_id><sourcerecordid>2593045580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5d5f355ba5831587d48b7ff5aadfec157ce869ca0754dfd3e61953ac9cde71ed3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMobk5P3iUnEaQuafqW1psMf8HAi7t4KWnyyjrapCYp6n9vZdOjp8eDj4_3PkLOObvhrBDz7Wc1R6-qTOYHZMqzBUvSTPBDMmUsTRNWgJyQkxC2jDFgAMdkIjKZSp6nU7J-a6ym0SsbeucjbSz1jcZbunEfNDpaqVZZjdT1selUS_txjdTj-9B47NDGQJU1dDN0ylI7RN_ExtlTclSrNuDZfs7I-uH-dfmUrF4en5d3q0QLvogJGKgFQKUgFxxyabK8knUNSpkaNQepMV8UWjEJmamNwAUvQChdaIOSoxEzcrXz9t69Dxhi2TVBYzseiW4IZQqFYBlAzkb0eodq70LwWJe9Hz_yXyVn5U_HcuxY7juO9MVePFQdmj_2N9wIXO4AN_T_mr4BQRx99Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593045580</pqid></control><display><type>article</type><title>Zinc transport in rice: how to balance optimal plant requirements and human nutrition</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Huang, Sheng ; Yamaji, Naoki ; Feng Ma, Jian</creator><contributor>Verbruggen, Nathalie</contributor><creatorcontrib>Huang, Sheng ; Yamaji, Naoki ; Feng Ma, Jian ; Verbruggen, Nathalie</creatorcontrib><description>Abstract
Zinc (Zn) is an essential micronutrient for both plants and animals, while its deficiency in crops and humans is a global problem that affects both crop productivity and human health. Since plants and humans differ in their Zn requirements, it is crucial to balance plant nutrition and human nutrition for Zn. In this review, we focus on the transport system of Zn from soil to grain in rice (Oryza sativa), which is a major dietary source of Zn for people subsiding on rice-based diets. We describe transporters belonging to the different families that are involved in the uptake, vacuolar sequestration, root-to-shoot translocation, and distribution of Zn, and discuss their mechanisms of regulation. We give examples for enhancing Zn accumulation and bioavailability in rice grains through the manipulation of genes that are highly expressed in the nodes, where Zn is deposited at high concentrations. Finally, we provide our perspectives on breeding rice cultivars with both increased tolerance to Zn-deficiency stress and high Zn density in the grains.
This review describes the transporters involved in the uptake, vacuolar sequestration, root-to-shoot translocation, and distribution of zinc in rice, and discusses how to balance optimal plant nutrition and human nutrition for zinc.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/erab478</identifier><identifier>PMID: 34727182</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><subject>Animals ; Edible Grain ; Humans ; Oryza - genetics ; Plant Breeding ; Plant Roots - genetics ; Zinc</subject><ispartof>Journal of experimental botany, 2022-03, Vol.73 (6), p.1800-1808</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5d5f355ba5831587d48b7ff5aadfec157ce869ca0754dfd3e61953ac9cde71ed3</citedby><cites>FETCH-LOGICAL-c316t-5d5f355ba5831587d48b7ff5aadfec157ce869ca0754dfd3e61953ac9cde71ed3</cites><orcidid>0000-0002-7499-3004 ; 0000-0003-3411-827X ; 0000-0002-2868-4331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34727182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Verbruggen, Nathalie</contributor><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Yamaji, Naoki</creatorcontrib><creatorcontrib>Feng Ma, Jian</creatorcontrib><title>Zinc transport in rice: how to balance optimal plant requirements and human nutrition</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>Abstract
Zinc (Zn) is an essential micronutrient for both plants and animals, while its deficiency in crops and humans is a global problem that affects both crop productivity and human health. Since plants and humans differ in their Zn requirements, it is crucial to balance plant nutrition and human nutrition for Zn. In this review, we focus on the transport system of Zn from soil to grain in rice (Oryza sativa), which is a major dietary source of Zn for people subsiding on rice-based diets. We describe transporters belonging to the different families that are involved in the uptake, vacuolar sequestration, root-to-shoot translocation, and distribution of Zn, and discuss their mechanisms of regulation. We give examples for enhancing Zn accumulation and bioavailability in rice grains through the manipulation of genes that are highly expressed in the nodes, where Zn is deposited at high concentrations. Finally, we provide our perspectives on breeding rice cultivars with both increased tolerance to Zn-deficiency stress and high Zn density in the grains.
This review describes the transporters involved in the uptake, vacuolar sequestration, root-to-shoot translocation, and distribution of zinc in rice, and discusses how to balance optimal plant nutrition and human nutrition for zinc.</description><subject>Animals</subject><subject>Edible Grain</subject><subject>Humans</subject><subject>Oryza - genetics</subject><subject>Plant Breeding</subject><subject>Plant Roots - genetics</subject><subject>Zinc</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9LwzAUgIMobk5P3iUnEaQuafqW1psMf8HAi7t4KWnyyjrapCYp6n9vZdOjp8eDj4_3PkLOObvhrBDz7Wc1R6-qTOYHZMqzBUvSTPBDMmUsTRNWgJyQkxC2jDFgAMdkIjKZSp6nU7J-a6ym0SsbeucjbSz1jcZbunEfNDpaqVZZjdT1selUS_txjdTj-9B47NDGQJU1dDN0ylI7RN_ExtlTclSrNuDZfs7I-uH-dfmUrF4en5d3q0QLvogJGKgFQKUgFxxyabK8knUNSpkaNQepMV8UWjEJmamNwAUvQChdaIOSoxEzcrXz9t69Dxhi2TVBYzseiW4IZQqFYBlAzkb0eodq70LwWJe9Hz_yXyVn5U_HcuxY7juO9MVePFQdmj_2N9wIXO4AN_T_mr4BQRx99Q</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Huang, Sheng</creator><creator>Yamaji, Naoki</creator><creator>Feng Ma, Jian</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7499-3004</orcidid><orcidid>https://orcid.org/0000-0003-3411-827X</orcidid><orcidid>https://orcid.org/0000-0002-2868-4331</orcidid></search><sort><creationdate>20220315</creationdate><title>Zinc transport in rice: how to balance optimal plant requirements and human nutrition</title><author>Huang, Sheng ; Yamaji, Naoki ; Feng Ma, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5d5f355ba5831587d48b7ff5aadfec157ce869ca0754dfd3e61953ac9cde71ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Edible Grain</topic><topic>Humans</topic><topic>Oryza - genetics</topic><topic>Plant Breeding</topic><topic>Plant Roots - genetics</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Yamaji, Naoki</creatorcontrib><creatorcontrib>Feng Ma, Jian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Sheng</au><au>Yamaji, Naoki</au><au>Feng Ma, Jian</au><au>Verbruggen, Nathalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc transport in rice: how to balance optimal plant requirements and human nutrition</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2022-03-15</date><risdate>2022</risdate><volume>73</volume><issue>6</issue><spage>1800</spage><epage>1808</epage><pages>1800-1808</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><abstract>Abstract
Zinc (Zn) is an essential micronutrient for both plants and animals, while its deficiency in crops and humans is a global problem that affects both crop productivity and human health. Since plants and humans differ in their Zn requirements, it is crucial to balance plant nutrition and human nutrition for Zn. In this review, we focus on the transport system of Zn from soil to grain in rice (Oryza sativa), which is a major dietary source of Zn for people subsiding on rice-based diets. We describe transporters belonging to the different families that are involved in the uptake, vacuolar sequestration, root-to-shoot translocation, and distribution of Zn, and discuss their mechanisms of regulation. We give examples for enhancing Zn accumulation and bioavailability in rice grains through the manipulation of genes that are highly expressed in the nodes, where Zn is deposited at high concentrations. Finally, we provide our perspectives on breeding rice cultivars with both increased tolerance to Zn-deficiency stress and high Zn density in the grains.
This review describes the transporters involved in the uptake, vacuolar sequestration, root-to-shoot translocation, and distribution of zinc in rice, and discusses how to balance optimal plant nutrition and human nutrition for zinc.</abstract><cop>UK</cop><pub>Oxford University Press</pub><pmid>34727182</pmid><doi>10.1093/jxb/erab478</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7499-3004</orcidid><orcidid>https://orcid.org/0000-0003-3411-827X</orcidid><orcidid>https://orcid.org/0000-0002-2868-4331</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0957 |
ispartof | Journal of experimental botany, 2022-03, Vol.73 (6), p.1800-1808 |
issn | 0022-0957 1460-2431 |
language | eng |
recordid | cdi_proquest_miscellaneous_2593045580 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Edible Grain Humans Oryza - genetics Plant Breeding Plant Roots - genetics Zinc |
title | Zinc transport in rice: how to balance optimal plant requirements and human nutrition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc%20transport%20in%20rice:%20how%20to%20balance%20optimal%20plant%20requirements%20and%20human%20nutrition&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Huang,%20Sheng&rft.date=2022-03-15&rft.volume=73&rft.issue=6&rft.spage=1800&rft.epage=1808&rft.pages=1800-1808&rft.issn=0022-0957&rft.eissn=1460-2431&rft_id=info:doi/10.1093/jxb/erab478&rft_dat=%3Cproquest_cross%3E2593045580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593045580&rft_id=info:pmid/34727182&rft_oup_id=10.1093/jxb/erab478&rfr_iscdi=true |