The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review

Machine learning uses historical data to make predictions about new data. It has been frequently applied in healthcare to optimise diagnostic classification through discovery of hidden patterns in data that may not be obvious to clinicians. Congenital Heart Defect (CHD) machine learning research ent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiology in the young 2021-11, Vol.31 (11), p.1770-1780
Hauptverfasser: Helman, Stephanie M., Herrup, Elizabeth A., Christopher, Adam B., Al-Zaiti, Salah S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1780
container_issue 11
container_start_page 1770
container_title Cardiology in the young
container_volume 31
creator Helman, Stephanie M.
Herrup, Elizabeth A.
Christopher, Adam B.
Al-Zaiti, Salah S.
description Machine learning uses historical data to make predictions about new data. It has been frequently applied in healthcare to optimise diagnostic classification through discovery of hidden patterns in data that may not be obvious to clinicians. Congenital Heart Defect (CHD) machine learning research entails one of the most promising clinical applications, in which timely and accurate diagnosis is essential. The objective of this scoping review is to summarise the application and clinical utility of machine learning techniques used in paediatric cardiology research, specifically focusing on approaches aiming to optimise diagnosis and assessment of underlying CHD. Out of 50 full-text articles identified between 2015 and 2021, 40% focused on optimising the diagnosis and assessment of CHD. Deep learning and support vector machine were the most commonly used algorithms, accounting for an overall diagnostic accuracy > 0.80. Clinical applications primarily focused on the classification of auscultatory heart sounds, transthoracic echocardiograms, and cardiac MRIs. The range of these applications and directions of future research are discussed in this scoping review.
doi_str_mv 10.1017/S1047951121004212
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2592308511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1047951121004212</cupid><sourcerecordid>2836007563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-3501186fea28fd9d0be94a56b34f4d7a9ebb36395aa9d6905d56b95bc6e6fe833</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0Eon88ABtkiQ2blHvj2Im7q4aWVqrEgnYdOfHN1FViB3tS1LfHMx2KBGJl-57vHFs-jL1HOEXA-vN3hKrWErFEgKrE8hU7xErVBSLUr_M-y8VWP2BHKT0AoBAIb9mBqOpSAshDttzeE49hJB4GPpn-3nniI5nonV9zM8-j683GBZ-489w6s_Yh7SRvuUmJ0u7UR7fJ4Lgb--CLl8Hq6ssZNzz1Yd6CkR4d_TxhbwYzJnq3X4_Z3eXF7eqquPn29Xp1flP0FapNISQgNmogUzaD1RY60pWRqhPVUNnaaOo6oYSWxmirNEibNS27XlE2NUIcs0_PuXMMPxZKm3ZyqadxNJ7CktpS6lJAk38oox__Qh_CEn1-XVs2QgHUUm0D8ZnqY0gp0tDO0U0mPrUI7baT9p9OsufDPnnpJrIvjt8lZEDsQ83URWfX9Ofu_8f-AsnPlcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836007563</pqid></control><display><type>article</type><title>The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review</title><source>MEDLINE</source><source>Cambridge University Press Journals Complete</source><creator>Helman, Stephanie M. ; Herrup, Elizabeth A. ; Christopher, Adam B. ; Al-Zaiti, Salah S.</creator><creatorcontrib>Helman, Stephanie M. ; Herrup, Elizabeth A. ; Christopher, Adam B. ; Al-Zaiti, Salah S.</creatorcontrib><description>Machine learning uses historical data to make predictions about new data. It has been frequently applied in healthcare to optimise diagnostic classification through discovery of hidden patterns in data that may not be obvious to clinicians. Congenital Heart Defect (CHD) machine learning research entails one of the most promising clinical applications, in which timely and accurate diagnosis is essential. The objective of this scoping review is to summarise the application and clinical utility of machine learning techniques used in paediatric cardiology research, specifically focusing on approaches aiming to optimise diagnosis and assessment of underlying CHD. Out of 50 full-text articles identified between 2015 and 2021, 40% focused on optimising the diagnosis and assessment of CHD. Deep learning and support vector machine were the most commonly used algorithms, accounting for an overall diagnostic accuracy &gt; 0.80. Clinical applications primarily focused on the classification of auscultatory heart sounds, transthoracic echocardiograms, and cardiac MRIs. The range of these applications and directions of future research are discussed in this scoping review.</description><identifier>ISSN: 1047-9511</identifier><identifier>EISSN: 1467-1107</identifier><identifier>DOI: 10.1017/S1047951121004212</identifier><identifier>PMID: 34725005</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Auscultation ; Cardiology ; Child ; Classification ; Congenital diseases ; Decision making ; Deep learning ; Diagnosis ; Discriminant analysis ; Echocardiography ; General Cardiology ; Heart ; Heart Defects, Congenital - diagnostic imaging ; Humans ; Learning algorithms ; Machine Learning ; Magnetic Resonance Imaging ; Mortality ; Neural networks ; Optimization ; Pediatrics ; Review ; Reviews ; Support Vector Machine ; Support vector machines ; Therapeutic applications</subject><ispartof>Cardiology in the young, 2021-11, Vol.31 (11), p.1770-1780</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-3501186fea28fd9d0be94a56b34f4d7a9ebb36395aa9d6905d56b95bc6e6fe833</citedby><cites>FETCH-LOGICAL-c416t-3501186fea28fd9d0be94a56b34f4d7a9ebb36395aa9d6905d56b95bc6e6fe833</cites><orcidid>0000-0002-7264-2825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1047951121004212/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34725005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Helman, Stephanie M.</creatorcontrib><creatorcontrib>Herrup, Elizabeth A.</creatorcontrib><creatorcontrib>Christopher, Adam B.</creatorcontrib><creatorcontrib>Al-Zaiti, Salah S.</creatorcontrib><title>The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review</title><title>Cardiology in the young</title><addtitle>Cardiol Young</addtitle><description>Machine learning uses historical data to make predictions about new data. It has been frequently applied in healthcare to optimise diagnostic classification through discovery of hidden patterns in data that may not be obvious to clinicians. Congenital Heart Defect (CHD) machine learning research entails one of the most promising clinical applications, in which timely and accurate diagnosis is essential. The objective of this scoping review is to summarise the application and clinical utility of machine learning techniques used in paediatric cardiology research, specifically focusing on approaches aiming to optimise diagnosis and assessment of underlying CHD. Out of 50 full-text articles identified between 2015 and 2021, 40% focused on optimising the diagnosis and assessment of CHD. Deep learning and support vector machine were the most commonly used algorithms, accounting for an overall diagnostic accuracy &gt; 0.80. Clinical applications primarily focused on the classification of auscultatory heart sounds, transthoracic echocardiograms, and cardiac MRIs. The range of these applications and directions of future research are discussed in this scoping review.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Auscultation</subject><subject>Cardiology</subject><subject>Child</subject><subject>Classification</subject><subject>Congenital diseases</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Discriminant analysis</subject><subject>Echocardiography</subject><subject>General Cardiology</subject><subject>Heart</subject><subject>Heart Defects, Congenital - diagnostic imaging</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Mortality</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Pediatrics</subject><subject>Review</subject><subject>Reviews</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Therapeutic applications</subject><issn>1047-9511</issn><issn>1467-1107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kc1u1DAUhS0Eon88ABtkiQ2blHvj2Im7q4aWVqrEgnYdOfHN1FViB3tS1LfHMx2KBGJl-57vHFs-jL1HOEXA-vN3hKrWErFEgKrE8hU7xErVBSLUr_M-y8VWP2BHKT0AoBAIb9mBqOpSAshDttzeE49hJB4GPpn-3nniI5nonV9zM8-j683GBZ-489w6s_Yh7SRvuUmJ0u7UR7fJ4Lgb--CLl8Hq6ssZNzz1Yd6CkR4d_TxhbwYzJnq3X4_Z3eXF7eqquPn29Xp1flP0FapNISQgNmogUzaD1RY60pWRqhPVUNnaaOo6oYSWxmirNEibNS27XlE2NUIcs0_PuXMMPxZKm3ZyqadxNJ7CktpS6lJAk38oox__Qh_CEn1-XVs2QgHUUm0D8ZnqY0gp0tDO0U0mPrUI7baT9p9OsufDPnnpJrIvjt8lZEDsQ83URWfX9Ofu_8f-AsnPlcc</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Helman, Stephanie M.</creator><creator>Herrup, Elizabeth A.</creator><creator>Christopher, Adam B.</creator><creator>Al-Zaiti, Salah S.</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7264-2825</orcidid></search><sort><creationdate>20211101</creationdate><title>The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review</title><author>Helman, Stephanie M. ; Herrup, Elizabeth A. ; Christopher, Adam B. ; Al-Zaiti, Salah S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-3501186fea28fd9d0be94a56b34f4d7a9ebb36395aa9d6905d56b95bc6e6fe833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Auscultation</topic><topic>Cardiology</topic><topic>Child</topic><topic>Classification</topic><topic>Congenital diseases</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Discriminant analysis</topic><topic>Echocardiography</topic><topic>General Cardiology</topic><topic>Heart</topic><topic>Heart Defects, Congenital - diagnostic imaging</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Mortality</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Pediatrics</topic><topic>Review</topic><topic>Reviews</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helman, Stephanie M.</creatorcontrib><creatorcontrib>Herrup, Elizabeth A.</creatorcontrib><creatorcontrib>Christopher, Adam B.</creatorcontrib><creatorcontrib>Al-Zaiti, Salah S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Cardiology in the young</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helman, Stephanie M.</au><au>Herrup, Elizabeth A.</au><au>Christopher, Adam B.</au><au>Al-Zaiti, Salah S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review</atitle><jtitle>Cardiology in the young</jtitle><addtitle>Cardiol Young</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>31</volume><issue>11</issue><spage>1770</spage><epage>1780</epage><pages>1770-1780</pages><issn>1047-9511</issn><eissn>1467-1107</eissn><abstract>Machine learning uses historical data to make predictions about new data. It has been frequently applied in healthcare to optimise diagnostic classification through discovery of hidden patterns in data that may not be obvious to clinicians. Congenital Heart Defect (CHD) machine learning research entails one of the most promising clinical applications, in which timely and accurate diagnosis is essential. The objective of this scoping review is to summarise the application and clinical utility of machine learning techniques used in paediatric cardiology research, specifically focusing on approaches aiming to optimise diagnosis and assessment of underlying CHD. Out of 50 full-text articles identified between 2015 and 2021, 40% focused on optimising the diagnosis and assessment of CHD. Deep learning and support vector machine were the most commonly used algorithms, accounting for an overall diagnostic accuracy &gt; 0.80. Clinical applications primarily focused on the classification of auscultatory heart sounds, transthoracic echocardiograms, and cardiac MRIs. The range of these applications and directions of future research are discussed in this scoping review.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>34725005</pmid><doi>10.1017/S1047951121004212</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7264-2825</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-9511
ispartof Cardiology in the young, 2021-11, Vol.31 (11), p.1770-1780
issn 1047-9511
1467-1107
language eng
recordid cdi_proquest_miscellaneous_2592308511
source MEDLINE; Cambridge University Press Journals Complete
subjects Accuracy
Algorithms
Artificial intelligence
Auscultation
Cardiology
Child
Classification
Congenital diseases
Decision making
Deep learning
Diagnosis
Discriminant analysis
Echocardiography
General Cardiology
Heart
Heart Defects, Congenital - diagnostic imaging
Humans
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
Mortality
Neural networks
Optimization
Pediatrics
Review
Reviews
Support Vector Machine
Support vector machines
Therapeutic applications
title The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A41%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20machine%20learning%20applications%20in%20diagnosing%20and%20assessing%20critical%20and%20non-critical%20CHD:%20a%20scoping%20review&rft.jtitle=Cardiology%20in%20the%20young&rft.au=Helman,%20Stephanie%20M.&rft.date=2021-11-01&rft.volume=31&rft.issue=11&rft.spage=1770&rft.epage=1780&rft.pages=1770-1780&rft.issn=1047-9511&rft.eissn=1467-1107&rft_id=info:doi/10.1017/S1047951121004212&rft_dat=%3Cproquest_cross%3E2836007563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836007563&rft_id=info:pmid/34725005&rft_cupid=10_1017_S1047951121004212&rfr_iscdi=true