The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review
Machine learning uses historical data to make predictions about new data. It has been frequently applied in healthcare to optimise diagnostic classification through discovery of hidden patterns in data that may not be obvious to clinicians. Congenital Heart Defect (CHD) machine learning research ent...
Gespeichert in:
Veröffentlicht in: | Cardiology in the young 2021-11, Vol.31 (11), p.1770-1780 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1780 |
---|---|
container_issue | 11 |
container_start_page | 1770 |
container_title | Cardiology in the young |
container_volume | 31 |
creator | Helman, Stephanie M. Herrup, Elizabeth A. Christopher, Adam B. Al-Zaiti, Salah S. |
description | Machine learning uses historical data to make predictions about new data. It has been frequently applied in healthcare to optimise diagnostic classification through discovery of hidden patterns in data that may not be obvious to clinicians. Congenital Heart Defect (CHD) machine learning research entails one of the most promising clinical applications, in which timely and accurate diagnosis is essential. The objective of this scoping review is to summarise the application and clinical utility of machine learning techniques used in paediatric cardiology research, specifically focusing on approaches aiming to optimise diagnosis and assessment of underlying CHD. Out of 50 full-text articles identified between 2015 and 2021, 40% focused on optimising the diagnosis and assessment of CHD. Deep learning and support vector machine were the most commonly used algorithms, accounting for an overall diagnostic accuracy > 0.80. Clinical applications primarily focused on the classification of auscultatory heart sounds, transthoracic echocardiograms, and cardiac MRIs. The range of these applications and directions of future research are discussed in this scoping review. |
doi_str_mv | 10.1017/S1047951121004212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2592308511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1047951121004212</cupid><sourcerecordid>2836007563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-3501186fea28fd9d0be94a56b34f4d7a9ebb36395aa9d6905d56b95bc6e6fe833</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0Eon88ABtkiQ2blHvj2Im7q4aWVqrEgnYdOfHN1FViB3tS1LfHMx2KBGJl-57vHFs-jL1HOEXA-vN3hKrWErFEgKrE8hU7xErVBSLUr_M-y8VWP2BHKT0AoBAIb9mBqOpSAshDttzeE49hJB4GPpn-3nniI5nonV9zM8-j683GBZ-489w6s_Yh7SRvuUmJ0u7UR7fJ4Lgb--CLl8Hq6ssZNzz1Yd6CkR4d_TxhbwYzJnq3X4_Z3eXF7eqquPn29Xp1flP0FapNISQgNmogUzaD1RY60pWRqhPVUNnaaOo6oYSWxmirNEibNS27XlE2NUIcs0_PuXMMPxZKm3ZyqadxNJ7CktpS6lJAk38oox__Qh_CEn1-XVs2QgHUUm0D8ZnqY0gp0tDO0U0mPrUI7baT9p9OsufDPnnpJrIvjt8lZEDsQ83URWfX9Ofu_8f-AsnPlcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836007563</pqid></control><display><type>article</type><title>The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review</title><source>MEDLINE</source><source>Cambridge University Press Journals Complete</source><creator>Helman, Stephanie M. ; Herrup, Elizabeth A. ; Christopher, Adam B. ; Al-Zaiti, Salah S.</creator><creatorcontrib>Helman, Stephanie M. ; Herrup, Elizabeth A. ; Christopher, Adam B. ; Al-Zaiti, Salah S.</creatorcontrib><description>Machine learning uses historical data to make predictions about new data. It has been frequently applied in healthcare to optimise diagnostic classification through discovery of hidden patterns in data that may not be obvious to clinicians. Congenital Heart Defect (CHD) machine learning research entails one of the most promising clinical applications, in which timely and accurate diagnosis is essential. The objective of this scoping review is to summarise the application and clinical utility of machine learning techniques used in paediatric cardiology research, specifically focusing on approaches aiming to optimise diagnosis and assessment of underlying CHD. Out of 50 full-text articles identified between 2015 and 2021, 40% focused on optimising the diagnosis and assessment of CHD. Deep learning and support vector machine were the most commonly used algorithms, accounting for an overall diagnostic accuracy > 0.80. Clinical applications primarily focused on the classification of auscultatory heart sounds, transthoracic echocardiograms, and cardiac MRIs. The range of these applications and directions of future research are discussed in this scoping review.</description><identifier>ISSN: 1047-9511</identifier><identifier>EISSN: 1467-1107</identifier><identifier>DOI: 10.1017/S1047951121004212</identifier><identifier>PMID: 34725005</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Auscultation ; Cardiology ; Child ; Classification ; Congenital diseases ; Decision making ; Deep learning ; Diagnosis ; Discriminant analysis ; Echocardiography ; General Cardiology ; Heart ; Heart Defects, Congenital - diagnostic imaging ; Humans ; Learning algorithms ; Machine Learning ; Magnetic Resonance Imaging ; Mortality ; Neural networks ; Optimization ; Pediatrics ; Review ; Reviews ; Support Vector Machine ; Support vector machines ; Therapeutic applications</subject><ispartof>Cardiology in the young, 2021-11, Vol.31 (11), p.1770-1780</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-3501186fea28fd9d0be94a56b34f4d7a9ebb36395aa9d6905d56b95bc6e6fe833</citedby><cites>FETCH-LOGICAL-c416t-3501186fea28fd9d0be94a56b34f4d7a9ebb36395aa9d6905d56b95bc6e6fe833</cites><orcidid>0000-0002-7264-2825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1047951121004212/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34725005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Helman, Stephanie M.</creatorcontrib><creatorcontrib>Herrup, Elizabeth A.</creatorcontrib><creatorcontrib>Christopher, Adam B.</creatorcontrib><creatorcontrib>Al-Zaiti, Salah S.</creatorcontrib><title>The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review</title><title>Cardiology in the young</title><addtitle>Cardiol Young</addtitle><description>Machine learning uses historical data to make predictions about new data. It has been frequently applied in healthcare to optimise diagnostic classification through discovery of hidden patterns in data that may not be obvious to clinicians. Congenital Heart Defect (CHD) machine learning research entails one of the most promising clinical applications, in which timely and accurate diagnosis is essential. The objective of this scoping review is to summarise the application and clinical utility of machine learning techniques used in paediatric cardiology research, specifically focusing on approaches aiming to optimise diagnosis and assessment of underlying CHD. Out of 50 full-text articles identified between 2015 and 2021, 40% focused on optimising the diagnosis and assessment of CHD. Deep learning and support vector machine were the most commonly used algorithms, accounting for an overall diagnostic accuracy > 0.80. Clinical applications primarily focused on the classification of auscultatory heart sounds, transthoracic echocardiograms, and cardiac MRIs. The range of these applications and directions of future research are discussed in this scoping review.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Auscultation</subject><subject>Cardiology</subject><subject>Child</subject><subject>Classification</subject><subject>Congenital diseases</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Discriminant analysis</subject><subject>Echocardiography</subject><subject>General Cardiology</subject><subject>Heart</subject><subject>Heart Defects, Congenital - diagnostic imaging</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Mortality</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Pediatrics</subject><subject>Review</subject><subject>Reviews</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Therapeutic applications</subject><issn>1047-9511</issn><issn>1467-1107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kc1u1DAUhS0Eon88ABtkiQ2blHvj2Im7q4aWVqrEgnYdOfHN1FViB3tS1LfHMx2KBGJl-57vHFs-jL1HOEXA-vN3hKrWErFEgKrE8hU7xErVBSLUr_M-y8VWP2BHKT0AoBAIb9mBqOpSAshDttzeE49hJB4GPpn-3nniI5nonV9zM8-j683GBZ-489w6s_Yh7SRvuUmJ0u7UR7fJ4Lgb--CLl8Hq6ssZNzz1Yd6CkR4d_TxhbwYzJnq3X4_Z3eXF7eqquPn29Xp1flP0FapNISQgNmogUzaD1RY60pWRqhPVUNnaaOo6oYSWxmirNEibNS27XlE2NUIcs0_PuXMMPxZKm3ZyqadxNJ7CktpS6lJAk38oox__Qh_CEn1-XVs2QgHUUm0D8ZnqY0gp0tDO0U0mPrUI7baT9p9OsufDPnnpJrIvjt8lZEDsQ83URWfX9Ofu_8f-AsnPlcc</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Helman, Stephanie M.</creator><creator>Herrup, Elizabeth A.</creator><creator>Christopher, Adam B.</creator><creator>Al-Zaiti, Salah S.</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7264-2825</orcidid></search><sort><creationdate>20211101</creationdate><title>The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review</title><author>Helman, Stephanie M. ; Herrup, Elizabeth A. ; Christopher, Adam B. ; Al-Zaiti, Salah S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-3501186fea28fd9d0be94a56b34f4d7a9ebb36395aa9d6905d56b95bc6e6fe833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Auscultation</topic><topic>Cardiology</topic><topic>Child</topic><topic>Classification</topic><topic>Congenital diseases</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Discriminant analysis</topic><topic>Echocardiography</topic><topic>General Cardiology</topic><topic>Heart</topic><topic>Heart Defects, Congenital - diagnostic imaging</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Mortality</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Pediatrics</topic><topic>Review</topic><topic>Reviews</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helman, Stephanie M.</creatorcontrib><creatorcontrib>Herrup, Elizabeth A.</creatorcontrib><creatorcontrib>Christopher, Adam B.</creatorcontrib><creatorcontrib>Al-Zaiti, Salah S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Cardiology in the young</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helman, Stephanie M.</au><au>Herrup, Elizabeth A.</au><au>Christopher, Adam B.</au><au>Al-Zaiti, Salah S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review</atitle><jtitle>Cardiology in the young</jtitle><addtitle>Cardiol Young</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>31</volume><issue>11</issue><spage>1770</spage><epage>1780</epage><pages>1770-1780</pages><issn>1047-9511</issn><eissn>1467-1107</eissn><abstract>Machine learning uses historical data to make predictions about new data. It has been frequently applied in healthcare to optimise diagnostic classification through discovery of hidden patterns in data that may not be obvious to clinicians. Congenital Heart Defect (CHD) machine learning research entails one of the most promising clinical applications, in which timely and accurate diagnosis is essential. The objective of this scoping review is to summarise the application and clinical utility of machine learning techniques used in paediatric cardiology research, specifically focusing on approaches aiming to optimise diagnosis and assessment of underlying CHD. Out of 50 full-text articles identified between 2015 and 2021, 40% focused on optimising the diagnosis and assessment of CHD. Deep learning and support vector machine were the most commonly used algorithms, accounting for an overall diagnostic accuracy > 0.80. Clinical applications primarily focused on the classification of auscultatory heart sounds, transthoracic echocardiograms, and cardiac MRIs. The range of these applications and directions of future research are discussed in this scoping review.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>34725005</pmid><doi>10.1017/S1047951121004212</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7264-2825</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-9511 |
ispartof | Cardiology in the young, 2021-11, Vol.31 (11), p.1770-1780 |
issn | 1047-9511 1467-1107 |
language | eng |
recordid | cdi_proquest_miscellaneous_2592308511 |
source | MEDLINE; Cambridge University Press Journals Complete |
subjects | Accuracy Algorithms Artificial intelligence Auscultation Cardiology Child Classification Congenital diseases Decision making Deep learning Diagnosis Discriminant analysis Echocardiography General Cardiology Heart Heart Defects, Congenital - diagnostic imaging Humans Learning algorithms Machine Learning Magnetic Resonance Imaging Mortality Neural networks Optimization Pediatrics Review Reviews Support Vector Machine Support vector machines Therapeutic applications |
title | The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A41%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20machine%20learning%20applications%20in%20diagnosing%20and%20assessing%20critical%20and%20non-critical%20CHD:%20a%20scoping%20review&rft.jtitle=Cardiology%20in%20the%20young&rft.au=Helman,%20Stephanie%20M.&rft.date=2021-11-01&rft.volume=31&rft.issue=11&rft.spage=1770&rft.epage=1780&rft.pages=1770-1780&rft.issn=1047-9511&rft.eissn=1467-1107&rft_id=info:doi/10.1017/S1047951121004212&rft_dat=%3Cproquest_cross%3E2836007563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836007563&rft_id=info:pmid/34725005&rft_cupid=10_1017_S1047951121004212&rfr_iscdi=true |