Application of 50 Hz superconductors close to self field conditions
Applications of 50 Hz superconductors like the transformer and the fault current limiter correspond to relatively low magnetic fields, so that AC losses and stability are mainly governed by the conductor self field. AC loss calculations as they are performed in most cases for superconductors, are ba...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 1995-06, Vol.5 (2), p.988-991 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 991 |
---|---|
container_issue | 2 |
container_start_page | 988 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 5 |
creator | Estop, P. Cottevieille, C. Poullain, S. Tavergnier, J.P. Verhaege, T. Lacaze, A. Laumond, Y. Le Naour, S. Ansart, A. Manuel, P. |
description | Applications of 50 Hz superconductors like the transformer and the fault current limiter correspond to relatively low magnetic fields, so that AC losses and stability are mainly governed by the conductor self field. AC loss calculations as they are performed in most cases for superconductors, are based on the Bean critical state model which states that everywhere in a superconductor, the current density has a modulus equal to the critical current density J/sub c/. This model is applicable when the superconducting transition E(J) is very sharp, but sizeable discrepancies appear for 50 Hz superconductors, as they present a relatively smooth superconducting transition. AC loss calculations have been developed using the Maxwell equations combined with the actual E(J) relationship. The heat generation in the conductor is then used as an input for a numerical calculation of the temperature distribution through the superconductor. The stability limits are directly derived from the thermal model.< > |
doi_str_mv | 10.1109/77.402716 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_25921061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>402716</ieee_id><sourcerecordid>25921061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-1947aa6a96c8b967d61c317cc3a3b9c8ac209855e99dfabc634d5ca0ade39ce53</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgUQpDKxMnpAYUvwRx_ZYVUCRKrHAbLmXi2Tk1sFOBvj1tErFynQnvc_d8BJyy9mCc2YftV7UTGjenJEZV8pUQnF1ftiZ4pURQl6Sq1I-GeO1qdWMrJZ9HwP4IaQ9TR1VjK5_aBl7zJD27QhDyoVCTAXpkGjB2NEuYGzpMQ7Hs3JNLjofC96c5px8PD-9r9bV5u3ldbXcVCCZGSpua-19420DZmsb3TYcJNcA0sutBeNBMGuUQmvbzm-hkXWrwDPforSASs7J_fS3z-lrxDK4XSiAMfo9prE4YYRmtRT_Q2UFZw0_wIcJQk6lZOxcn8PO52_HmTv26bR2U58HezfZgIh_7hT-AmZpb6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25921061</pqid></control><display><type>article</type><title>Application of 50 Hz superconductors close to self field conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Estop, P. ; Cottevieille, C. ; Poullain, S. ; Tavergnier, J.P. ; Verhaege, T. ; Lacaze, A. ; Laumond, Y. ; Le Naour, S. ; Ansart, A. ; Manuel, P.</creator><creatorcontrib>Estop, P. ; Cottevieille, C. ; Poullain, S. ; Tavergnier, J.P. ; Verhaege, T. ; Lacaze, A. ; Laumond, Y. ; Le Naour, S. ; Ansart, A. ; Manuel, P.</creatorcontrib><description>Applications of 50 Hz superconductors like the transformer and the fault current limiter correspond to relatively low magnetic fields, so that AC losses and stability are mainly governed by the conductor self field. AC loss calculations as they are performed in most cases for superconductors, are based on the Bean critical state model which states that everywhere in a superconductor, the current density has a modulus equal to the critical current density J/sub c/. This model is applicable when the superconducting transition E(J) is very sharp, but sizeable discrepancies appear for 50 Hz superconductors, as they present a relatively smooth superconducting transition. AC loss calculations have been developed using the Maxwell equations combined with the actual E(J) relationship. The heat generation in the conductor is then used as an input for a numerical calculation of the temperature distribution through the superconductor. The stability limits are directly derived from the thermal model.< ></description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/77.402716</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bean model ; Conductors ; Critical current density ; Current density ; Fault current limiters ; Magnetic fields ; Maxwell equations ; Stability ; Superconductivity ; Temperature distribution</subject><ispartof>IEEE transactions on applied superconductivity, 1995-06, Vol.5 (2), p.988-991</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-1947aa6a96c8b967d61c317cc3a3b9c8ac209855e99dfabc634d5ca0ade39ce53</citedby><cites>FETCH-LOGICAL-c308t-1947aa6a96c8b967d61c317cc3a3b9c8ac209855e99dfabc634d5ca0ade39ce53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/402716$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/402716$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Estop, P.</creatorcontrib><creatorcontrib>Cottevieille, C.</creatorcontrib><creatorcontrib>Poullain, S.</creatorcontrib><creatorcontrib>Tavergnier, J.P.</creatorcontrib><creatorcontrib>Verhaege, T.</creatorcontrib><creatorcontrib>Lacaze, A.</creatorcontrib><creatorcontrib>Laumond, Y.</creatorcontrib><creatorcontrib>Le Naour, S.</creatorcontrib><creatorcontrib>Ansart, A.</creatorcontrib><creatorcontrib>Manuel, P.</creatorcontrib><title>Application of 50 Hz superconductors close to self field conditions</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Applications of 50 Hz superconductors like the transformer and the fault current limiter correspond to relatively low magnetic fields, so that AC losses and stability are mainly governed by the conductor self field. AC loss calculations as they are performed in most cases for superconductors, are based on the Bean critical state model which states that everywhere in a superconductor, the current density has a modulus equal to the critical current density J/sub c/. This model is applicable when the superconducting transition E(J) is very sharp, but sizeable discrepancies appear for 50 Hz superconductors, as they present a relatively smooth superconducting transition. AC loss calculations have been developed using the Maxwell equations combined with the actual E(J) relationship. The heat generation in the conductor is then used as an input for a numerical calculation of the temperature distribution through the superconductor. The stability limits are directly derived from the thermal model.< ></description><subject>Bean model</subject><subject>Conductors</subject><subject>Critical current density</subject><subject>Current density</subject><subject>Fault current limiters</subject><subject>Magnetic fields</subject><subject>Maxwell equations</subject><subject>Stability</subject><subject>Superconductivity</subject><subject>Temperature distribution</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQBmALgUQpDKxMnpAYUvwRx_ZYVUCRKrHAbLmXi2Tk1sFOBvj1tErFynQnvc_d8BJyy9mCc2YftV7UTGjenJEZV8pUQnF1ftiZ4pURQl6Sq1I-GeO1qdWMrJZ9HwP4IaQ9TR1VjK5_aBl7zJD27QhDyoVCTAXpkGjB2NEuYGzpMQ7Hs3JNLjofC96c5px8PD-9r9bV5u3ldbXcVCCZGSpua-19420DZmsb3TYcJNcA0sutBeNBMGuUQmvbzm-hkXWrwDPforSASs7J_fS3z-lrxDK4XSiAMfo9prE4YYRmtRT_Q2UFZw0_wIcJQk6lZOxcn8PO52_HmTv26bR2U58HezfZgIh_7hT-AmZpb6s</recordid><startdate>19950601</startdate><enddate>19950601</enddate><creator>Estop, P.</creator><creator>Cottevieille, C.</creator><creator>Poullain, S.</creator><creator>Tavergnier, J.P.</creator><creator>Verhaege, T.</creator><creator>Lacaze, A.</creator><creator>Laumond, Y.</creator><creator>Le Naour, S.</creator><creator>Ansart, A.</creator><creator>Manuel, P.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19950601</creationdate><title>Application of 50 Hz superconductors close to self field conditions</title><author>Estop, P. ; Cottevieille, C. ; Poullain, S. ; Tavergnier, J.P. ; Verhaege, T. ; Lacaze, A. ; Laumond, Y. ; Le Naour, S. ; Ansart, A. ; Manuel, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-1947aa6a96c8b967d61c317cc3a3b9c8ac209855e99dfabc634d5ca0ade39ce53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Bean model</topic><topic>Conductors</topic><topic>Critical current density</topic><topic>Current density</topic><topic>Fault current limiters</topic><topic>Magnetic fields</topic><topic>Maxwell equations</topic><topic>Stability</topic><topic>Superconductivity</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Estop, P.</creatorcontrib><creatorcontrib>Cottevieille, C.</creatorcontrib><creatorcontrib>Poullain, S.</creatorcontrib><creatorcontrib>Tavergnier, J.P.</creatorcontrib><creatorcontrib>Verhaege, T.</creatorcontrib><creatorcontrib>Lacaze, A.</creatorcontrib><creatorcontrib>Laumond, Y.</creatorcontrib><creatorcontrib>Le Naour, S.</creatorcontrib><creatorcontrib>Ansart, A.</creatorcontrib><creatorcontrib>Manuel, P.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Estop, P.</au><au>Cottevieille, C.</au><au>Poullain, S.</au><au>Tavergnier, J.P.</au><au>Verhaege, T.</au><au>Lacaze, A.</au><au>Laumond, Y.</au><au>Le Naour, S.</au><au>Ansart, A.</au><au>Manuel, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of 50 Hz superconductors close to self field conditions</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>1995-06-01</date><risdate>1995</risdate><volume>5</volume><issue>2</issue><spage>988</spage><epage>991</epage><pages>988-991</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Applications of 50 Hz superconductors like the transformer and the fault current limiter correspond to relatively low magnetic fields, so that AC losses and stability are mainly governed by the conductor self field. AC loss calculations as they are performed in most cases for superconductors, are based on the Bean critical state model which states that everywhere in a superconductor, the current density has a modulus equal to the critical current density J/sub c/. This model is applicable when the superconducting transition E(J) is very sharp, but sizeable discrepancies appear for 50 Hz superconductors, as they present a relatively smooth superconducting transition. AC loss calculations have been developed using the Maxwell equations combined with the actual E(J) relationship. The heat generation in the conductor is then used as an input for a numerical calculation of the temperature distribution through the superconductor. The stability limits are directly derived from the thermal model.< ></abstract><pub>IEEE</pub><doi>10.1109/77.402716</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 1995-06, Vol.5 (2), p.988-991 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_miscellaneous_25921061 |
source | IEEE Electronic Library (IEL) |
subjects | Bean model Conductors Critical current density Current density Fault current limiters Magnetic fields Maxwell equations Stability Superconductivity Temperature distribution |
title | Application of 50 Hz superconductors close to self field conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%2050%20Hz%20superconductors%20close%20to%20self%20field%20conditions&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Estop,%20P.&rft.date=1995-06-01&rft.volume=5&rft.issue=2&rft.spage=988&rft.epage=991&rft.pages=988-991&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/77.402716&rft_dat=%3Cproquest_RIE%3E25921061%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25921061&rft_id=info:pmid/&rft_ieee_id=402716&rfr_iscdi=true |