Application of 50 Hz superconductors close to self field conditions

Applications of 50 Hz superconductors like the transformer and the fault current limiter correspond to relatively low magnetic fields, so that AC losses and stability are mainly governed by the conductor self field. AC loss calculations as they are performed in most cases for superconductors, are ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 1995-06, Vol.5 (2), p.988-991
Hauptverfasser: Estop, P., Cottevieille, C., Poullain, S., Tavergnier, J.P., Verhaege, T., Lacaze, A., Laumond, Y., Le Naour, S., Ansart, A., Manuel, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 991
container_issue 2
container_start_page 988
container_title IEEE transactions on applied superconductivity
container_volume 5
creator Estop, P.
Cottevieille, C.
Poullain, S.
Tavergnier, J.P.
Verhaege, T.
Lacaze, A.
Laumond, Y.
Le Naour, S.
Ansart, A.
Manuel, P.
description Applications of 50 Hz superconductors like the transformer and the fault current limiter correspond to relatively low magnetic fields, so that AC losses and stability are mainly governed by the conductor self field. AC loss calculations as they are performed in most cases for superconductors, are based on the Bean critical state model which states that everywhere in a superconductor, the current density has a modulus equal to the critical current density J/sub c/. This model is applicable when the superconducting transition E(J) is very sharp, but sizeable discrepancies appear for 50 Hz superconductors, as they present a relatively smooth superconducting transition. AC loss calculations have been developed using the Maxwell equations combined with the actual E(J) relationship. The heat generation in the conductor is then used as an input for a numerical calculation of the temperature distribution through the superconductor. The stability limits are directly derived from the thermal model.< >
doi_str_mv 10.1109/77.402716
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_25921061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>402716</ieee_id><sourcerecordid>25921061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-1947aa6a96c8b967d61c317cc3a3b9c8ac209855e99dfabc634d5ca0ade39ce53</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgUQpDKxMnpAYUvwRx_ZYVUCRKrHAbLmXi2Tk1sFOBvj1tErFynQnvc_d8BJyy9mCc2YftV7UTGjenJEZV8pUQnF1ftiZ4pURQl6Sq1I-GeO1qdWMrJZ9HwP4IaQ9TR1VjK5_aBl7zJD27QhDyoVCTAXpkGjB2NEuYGzpMQ7Hs3JNLjofC96c5px8PD-9r9bV5u3ldbXcVCCZGSpua-19420DZmsb3TYcJNcA0sutBeNBMGuUQmvbzm-hkXWrwDPforSASs7J_fS3z-lrxDK4XSiAMfo9prE4YYRmtRT_Q2UFZw0_wIcJQk6lZOxcn8PO52_HmTv26bR2U58HezfZgIh_7hT-AmZpb6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25921061</pqid></control><display><type>article</type><title>Application of 50 Hz superconductors close to self field conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Estop, P. ; Cottevieille, C. ; Poullain, S. ; Tavergnier, J.P. ; Verhaege, T. ; Lacaze, A. ; Laumond, Y. ; Le Naour, S. ; Ansart, A. ; Manuel, P.</creator><creatorcontrib>Estop, P. ; Cottevieille, C. ; Poullain, S. ; Tavergnier, J.P. ; Verhaege, T. ; Lacaze, A. ; Laumond, Y. ; Le Naour, S. ; Ansart, A. ; Manuel, P.</creatorcontrib><description>Applications of 50 Hz superconductors like the transformer and the fault current limiter correspond to relatively low magnetic fields, so that AC losses and stability are mainly governed by the conductor self field. AC loss calculations as they are performed in most cases for superconductors, are based on the Bean critical state model which states that everywhere in a superconductor, the current density has a modulus equal to the critical current density J/sub c/. This model is applicable when the superconducting transition E(J) is very sharp, but sizeable discrepancies appear for 50 Hz superconductors, as they present a relatively smooth superconducting transition. AC loss calculations have been developed using the Maxwell equations combined with the actual E(J) relationship. The heat generation in the conductor is then used as an input for a numerical calculation of the temperature distribution through the superconductor. The stability limits are directly derived from the thermal model.&lt; &gt;</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/77.402716</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bean model ; Conductors ; Critical current density ; Current density ; Fault current limiters ; Magnetic fields ; Maxwell equations ; Stability ; Superconductivity ; Temperature distribution</subject><ispartof>IEEE transactions on applied superconductivity, 1995-06, Vol.5 (2), p.988-991</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-1947aa6a96c8b967d61c317cc3a3b9c8ac209855e99dfabc634d5ca0ade39ce53</citedby><cites>FETCH-LOGICAL-c308t-1947aa6a96c8b967d61c317cc3a3b9c8ac209855e99dfabc634d5ca0ade39ce53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/402716$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/402716$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Estop, P.</creatorcontrib><creatorcontrib>Cottevieille, C.</creatorcontrib><creatorcontrib>Poullain, S.</creatorcontrib><creatorcontrib>Tavergnier, J.P.</creatorcontrib><creatorcontrib>Verhaege, T.</creatorcontrib><creatorcontrib>Lacaze, A.</creatorcontrib><creatorcontrib>Laumond, Y.</creatorcontrib><creatorcontrib>Le Naour, S.</creatorcontrib><creatorcontrib>Ansart, A.</creatorcontrib><creatorcontrib>Manuel, P.</creatorcontrib><title>Application of 50 Hz superconductors close to self field conditions</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Applications of 50 Hz superconductors like the transformer and the fault current limiter correspond to relatively low magnetic fields, so that AC losses and stability are mainly governed by the conductor self field. AC loss calculations as they are performed in most cases for superconductors, are based on the Bean critical state model which states that everywhere in a superconductor, the current density has a modulus equal to the critical current density J/sub c/. This model is applicable when the superconducting transition E(J) is very sharp, but sizeable discrepancies appear for 50 Hz superconductors, as they present a relatively smooth superconducting transition. AC loss calculations have been developed using the Maxwell equations combined with the actual E(J) relationship. The heat generation in the conductor is then used as an input for a numerical calculation of the temperature distribution through the superconductor. The stability limits are directly derived from the thermal model.&lt; &gt;</description><subject>Bean model</subject><subject>Conductors</subject><subject>Critical current density</subject><subject>Current density</subject><subject>Fault current limiters</subject><subject>Magnetic fields</subject><subject>Maxwell equations</subject><subject>Stability</subject><subject>Superconductivity</subject><subject>Temperature distribution</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQBmALgUQpDKxMnpAYUvwRx_ZYVUCRKrHAbLmXi2Tk1sFOBvj1tErFynQnvc_d8BJyy9mCc2YftV7UTGjenJEZV8pUQnF1ftiZ4pURQl6Sq1I-GeO1qdWMrJZ9HwP4IaQ9TR1VjK5_aBl7zJD27QhDyoVCTAXpkGjB2NEuYGzpMQ7Hs3JNLjofC96c5px8PD-9r9bV5u3ldbXcVCCZGSpua-19420DZmsb3TYcJNcA0sutBeNBMGuUQmvbzm-hkXWrwDPforSASs7J_fS3z-lrxDK4XSiAMfo9prE4YYRmtRT_Q2UFZw0_wIcJQk6lZOxcn8PO52_HmTv26bR2U58HezfZgIh_7hT-AmZpb6s</recordid><startdate>19950601</startdate><enddate>19950601</enddate><creator>Estop, P.</creator><creator>Cottevieille, C.</creator><creator>Poullain, S.</creator><creator>Tavergnier, J.P.</creator><creator>Verhaege, T.</creator><creator>Lacaze, A.</creator><creator>Laumond, Y.</creator><creator>Le Naour, S.</creator><creator>Ansart, A.</creator><creator>Manuel, P.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19950601</creationdate><title>Application of 50 Hz superconductors close to self field conditions</title><author>Estop, P. ; Cottevieille, C. ; Poullain, S. ; Tavergnier, J.P. ; Verhaege, T. ; Lacaze, A. ; Laumond, Y. ; Le Naour, S. ; Ansart, A. ; Manuel, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-1947aa6a96c8b967d61c317cc3a3b9c8ac209855e99dfabc634d5ca0ade39ce53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Bean model</topic><topic>Conductors</topic><topic>Critical current density</topic><topic>Current density</topic><topic>Fault current limiters</topic><topic>Magnetic fields</topic><topic>Maxwell equations</topic><topic>Stability</topic><topic>Superconductivity</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Estop, P.</creatorcontrib><creatorcontrib>Cottevieille, C.</creatorcontrib><creatorcontrib>Poullain, S.</creatorcontrib><creatorcontrib>Tavergnier, J.P.</creatorcontrib><creatorcontrib>Verhaege, T.</creatorcontrib><creatorcontrib>Lacaze, A.</creatorcontrib><creatorcontrib>Laumond, Y.</creatorcontrib><creatorcontrib>Le Naour, S.</creatorcontrib><creatorcontrib>Ansart, A.</creatorcontrib><creatorcontrib>Manuel, P.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Estop, P.</au><au>Cottevieille, C.</au><au>Poullain, S.</au><au>Tavergnier, J.P.</au><au>Verhaege, T.</au><au>Lacaze, A.</au><au>Laumond, Y.</au><au>Le Naour, S.</au><au>Ansart, A.</au><au>Manuel, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of 50 Hz superconductors close to self field conditions</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>1995-06-01</date><risdate>1995</risdate><volume>5</volume><issue>2</issue><spage>988</spage><epage>991</epage><pages>988-991</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Applications of 50 Hz superconductors like the transformer and the fault current limiter correspond to relatively low magnetic fields, so that AC losses and stability are mainly governed by the conductor self field. AC loss calculations as they are performed in most cases for superconductors, are based on the Bean critical state model which states that everywhere in a superconductor, the current density has a modulus equal to the critical current density J/sub c/. This model is applicable when the superconducting transition E(J) is very sharp, but sizeable discrepancies appear for 50 Hz superconductors, as they present a relatively smooth superconducting transition. AC loss calculations have been developed using the Maxwell equations combined with the actual E(J) relationship. The heat generation in the conductor is then used as an input for a numerical calculation of the temperature distribution through the superconductor. The stability limits are directly derived from the thermal model.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/77.402716</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 1995-06, Vol.5 (2), p.988-991
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_25921061
source IEEE Electronic Library (IEL)
subjects Bean model
Conductors
Critical current density
Current density
Fault current limiters
Magnetic fields
Maxwell equations
Stability
Superconductivity
Temperature distribution
title Application of 50 Hz superconductors close to self field conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%2050%20Hz%20superconductors%20close%20to%20self%20field%20conditions&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Estop,%20P.&rft.date=1995-06-01&rft.volume=5&rft.issue=2&rft.spage=988&rft.epage=991&rft.pages=988-991&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/77.402716&rft_dat=%3Cproquest_RIE%3E25921061%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25921061&rft_id=info:pmid/&rft_ieee_id=402716&rfr_iscdi=true