Experimental and numerical investigation of standing-wave thermoacoustic instability under transcritical temperature conditions
This manuscript describes an experimental and numerical investigation of transcritical thermoacoustic instability in a standing-wave setup using the refrigerant octafluoropropane (R-218) as the working fluid. Thermoacoustic instability is excited by two microtube heat exchangers separated by a vacuu...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2021-10, Vol.150 (4), p.2900-2911 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2911 |
---|---|
container_issue | 4 |
container_start_page | 2900 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 150 |
creator | Martinez, Ariana Migliorino, Mario Tindaro Scalo, Carlo Heister, Stephen D. |
description | This manuscript describes an experimental and numerical investigation of transcritical thermoacoustic instability in a standing-wave setup using the refrigerant octafluoropropane (R-218) as the working fluid. Thermoacoustic instability is excited by two microtube heat exchangers separated by a vacuum-jacketed microtube stack. R-218 is allowed to flow axially through the microtubes into a closed resonator while heating and cooling fluids flow radially over the microtubes to create a temperature gradient. The fluid achieved pressure amplitudes up to 669 kPa (97 psi) at a temperature difference
Δ
T
=
T
hot
−
T
cold of 150 K and a base pressure, P0, of 1.3 times the critical pressure (3.43 MPa). The high pressure amplitudes obtained are attributed to the strong density variations near the critical point of the working fluid. The thermoacoustic response was characterized in a set of parametric studies in which
Δ
T, base pressure, and resonator length were varied. A modeling approach based on linearized Navier–Stokes equations reproduces the experimental results with fair agreement. This work demonstrates promising application of transcritical working fluids to thermoacoustic engines as devices for energy extraction and waste heat removal. |
doi_str_mv | 10.1121/10.0006659 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2591213491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591213491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e8b2b12d7e58bd3ff0d7a4a2f0f76c4d38559849fe3561d25e1e4f8e60a7f4803</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK5e_AU9ilJN2iZtj7KsH7DgRc8lTSdrpE1rkq7uyb_u7AfiQTy9zOThDfMQcs7oNWMJu8GklArBywMyYTyhccGT7JBMcMvirBTimJx4_4YjL9JyQr7mnwM404ENso2kbSI7drhQOBm7Ah_MUgbT26jXkQ8IGLuMP-QKovAKruul6keEFNL4XJvWhHU02gZcFJy0XjkTtm0BOvxJhtFBpHrs2bT6U3KkZevhbJ9T8nI3f549xIun-8fZ7SJWaSpCDEWd1CxpcuBF3aRa0yaXmUw01blQWZMWnJdFVmpIuWBNwoFBpgsQVOY6K2g6JRe73sH17yOeVXXGK2hbaQEPqBJeor80KxmilztUud57B7oaUJB064rRamN5k3vLCF_tYK9M2Ir6oVe9-0VWQ6P_o__o_gYHN4_y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591213491</pqid></control><display><type>article</type><title>Experimental and numerical investigation of standing-wave thermoacoustic instability under transcritical temperature conditions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Martinez, Ariana ; Migliorino, Mario Tindaro ; Scalo, Carlo ; Heister, Stephen D.</creator><creatorcontrib>Martinez, Ariana ; Migliorino, Mario Tindaro ; Scalo, Carlo ; Heister, Stephen D.</creatorcontrib><description>This manuscript describes an experimental and numerical investigation of transcritical thermoacoustic instability in a standing-wave setup using the refrigerant octafluoropropane (R-218) as the working fluid. Thermoacoustic instability is excited by two microtube heat exchangers separated by a vacuum-jacketed microtube stack. R-218 is allowed to flow axially through the microtubes into a closed resonator while heating and cooling fluids flow radially over the microtubes to create a temperature gradient. The fluid achieved pressure amplitudes up to 669 kPa (97 psi) at a temperature difference
Δ
T
=
T
hot
−
T
cold of 150 K and a base pressure, P0, of 1.3 times the critical pressure (3.43 MPa). The high pressure amplitudes obtained are attributed to the strong density variations near the critical point of the working fluid. The thermoacoustic response was characterized in a set of parametric studies in which
Δ
T, base pressure, and resonator length were varied. A modeling approach based on linearized Navier–Stokes equations reproduces the experimental results with fair agreement. This work demonstrates promising application of transcritical working fluids to thermoacoustic engines as devices for energy extraction and waste heat removal.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0006659</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2021-10, Vol.150 (4), p.2900-2911</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e8b2b12d7e58bd3ff0d7a4a2f0f76c4d38559849fe3561d25e1e4f8e60a7f4803</citedby><cites>FETCH-LOGICAL-c336t-e8b2b12d7e58bd3ff0d7a4a2f0f76c4d38559849fe3561d25e1e4f8e60a7f4803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0006659$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Martinez, Ariana</creatorcontrib><creatorcontrib>Migliorino, Mario Tindaro</creatorcontrib><creatorcontrib>Scalo, Carlo</creatorcontrib><creatorcontrib>Heister, Stephen D.</creatorcontrib><title>Experimental and numerical investigation of standing-wave thermoacoustic instability under transcritical temperature conditions</title><title>The Journal of the Acoustical Society of America</title><description>This manuscript describes an experimental and numerical investigation of transcritical thermoacoustic instability in a standing-wave setup using the refrigerant octafluoropropane (R-218) as the working fluid. Thermoacoustic instability is excited by two microtube heat exchangers separated by a vacuum-jacketed microtube stack. R-218 is allowed to flow axially through the microtubes into a closed resonator while heating and cooling fluids flow radially over the microtubes to create a temperature gradient. The fluid achieved pressure amplitudes up to 669 kPa (97 psi) at a temperature difference
Δ
T
=
T
hot
−
T
cold of 150 K and a base pressure, P0, of 1.3 times the critical pressure (3.43 MPa). The high pressure amplitudes obtained are attributed to the strong density variations near the critical point of the working fluid. The thermoacoustic response was characterized in a set of parametric studies in which
Δ
T, base pressure, and resonator length were varied. A modeling approach based on linearized Navier–Stokes equations reproduces the experimental results with fair agreement. This work demonstrates promising application of transcritical working fluids to thermoacoustic engines as devices for energy extraction and waste heat removal.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK5e_AU9ilJN2iZtj7KsH7DgRc8lTSdrpE1rkq7uyb_u7AfiQTy9zOThDfMQcs7oNWMJu8GklArBywMyYTyhccGT7JBMcMvirBTimJx4_4YjL9JyQr7mnwM404ENso2kbSI7drhQOBm7Ah_MUgbT26jXkQ8IGLuMP-QKovAKruul6keEFNL4XJvWhHU02gZcFJy0XjkTtm0BOvxJhtFBpHrs2bT6U3KkZevhbJ9T8nI3f549xIun-8fZ7SJWaSpCDEWd1CxpcuBF3aRa0yaXmUw01blQWZMWnJdFVmpIuWBNwoFBpgsQVOY6K2g6JRe73sH17yOeVXXGK2hbaQEPqBJeor80KxmilztUud57B7oaUJB064rRamN5k3vLCF_tYK9M2Ir6oVe9-0VWQ6P_o__o_gYHN4_y</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Martinez, Ariana</creator><creator>Migliorino, Mario Tindaro</creator><creator>Scalo, Carlo</creator><creator>Heister, Stephen D.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>Experimental and numerical investigation of standing-wave thermoacoustic instability under transcritical temperature conditions</title><author>Martinez, Ariana ; Migliorino, Mario Tindaro ; Scalo, Carlo ; Heister, Stephen D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e8b2b12d7e58bd3ff0d7a4a2f0f76c4d38559849fe3561d25e1e4f8e60a7f4803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez, Ariana</creatorcontrib><creatorcontrib>Migliorino, Mario Tindaro</creatorcontrib><creatorcontrib>Scalo, Carlo</creatorcontrib><creatorcontrib>Heister, Stephen D.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez, Ariana</au><au>Migliorino, Mario Tindaro</au><au>Scalo, Carlo</au><au>Heister, Stephen D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical investigation of standing-wave thermoacoustic instability under transcritical temperature conditions</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2021-10</date><risdate>2021</risdate><volume>150</volume><issue>4</issue><spage>2900</spage><epage>2911</epage><pages>2900-2911</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>This manuscript describes an experimental and numerical investigation of transcritical thermoacoustic instability in a standing-wave setup using the refrigerant octafluoropropane (R-218) as the working fluid. Thermoacoustic instability is excited by two microtube heat exchangers separated by a vacuum-jacketed microtube stack. R-218 is allowed to flow axially through the microtubes into a closed resonator while heating and cooling fluids flow radially over the microtubes to create a temperature gradient. The fluid achieved pressure amplitudes up to 669 kPa (97 psi) at a temperature difference
Δ
T
=
T
hot
−
T
cold of 150 K and a base pressure, P0, of 1.3 times the critical pressure (3.43 MPa). The high pressure amplitudes obtained are attributed to the strong density variations near the critical point of the working fluid. The thermoacoustic response was characterized in a set of parametric studies in which
Δ
T, base pressure, and resonator length were varied. A modeling approach based on linearized Navier–Stokes equations reproduces the experimental results with fair agreement. This work demonstrates promising application of transcritical working fluids to thermoacoustic engines as devices for energy extraction and waste heat removal.</abstract><doi>10.1121/10.0006659</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2021-10, Vol.150 (4), p.2900-2911 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_2591213491 |
source | AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America |
title | Experimental and numerical investigation of standing-wave thermoacoustic instability under transcritical temperature conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20investigation%20of%20standing-wave%20thermoacoustic%20instability%20under%20transcritical%20temperature%20conditions&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Martinez,%20Ariana&rft.date=2021-10&rft.volume=150&rft.issue=4&rft.spage=2900&rft.epage=2911&rft.pages=2900-2911&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0006659&rft_dat=%3Cproquest_scita%3E2591213491%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591213491&rft_id=info:pmid/&rfr_iscdi=true |