Theoretical Study of Stability Criteria for X-Bracing Systems

Using a theoretical approach, stability criteria for X-bracing systems are formulated. For two different end constraints, simple closed-form relationships are presented for calculating the critical compressive load. As a design aid, curves of the effective length factor versus the ratio T/P, where T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mechanics 1992-07, Vol.118 (7), p.1357-1364
Hauptverfasser: Wang, Dong Q, Boresi, Arthur P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1364
container_issue 7
container_start_page 1357
container_title Journal of engineering mechanics
container_volume 118
creator Wang, Dong Q
Boresi, Arthur P
description Using a theoretical approach, stability criteria for X-bracing systems are formulated. For two different end constraints, simple closed-form relationships are presented for calculating the critical compressive load. As a design aid, curves of the effective length factor versus the ratio T/P, where T and P are tension and compression brace axial forces, respectively, are given. Criteria are formulated for the general case where the tension and compression braces may have different material and geometrical properties. Some important characteristics are revealed: the ratio T/P increases as the effective length factor k decreases; after a certain value at which the compression brace buckles in the second mode, it will remain unchanged. As the flexural rigidity, EtIt of the tension brace increases, the ratio T/P at which buckling occurs in the second mode decreases, and the effective length factor k also decreases. Therefore, it is possible for the compression brace to snap through in the first buckling mode due to a total loss of the tension brace flexural rigidity. However, when the tension brace flexural rigidity reaches a certain value, the compression brace buckles in the second mode.
doi_str_mv 10.1061/(ASCE)0733-9399(1992)118:7(1357)
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25905711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25905711</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-f16e3c686d64def159b5a4947e01b13ef92ae7c0b2520367df293d3980abac023</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwHzIg1A4Bn53EMRJCpZQvFRhaJJgsJ7HBVZoUOx3y73Fo6cot9w6P3js9CA0AnwNO4GIwmo0nQ8woDTnlfACckyFAeskGQGM23EM94BENWZryfdTbgYfoyLkFxhAlPOmhq_mXqq1qTC7LYNasizaotQ8yM6Vp2mBsTaOskYGubfAe3liZm-ozmLWuUUt3jA60LJ062e4-erubzMcP4fT1_nE8moYyAtKEGhJF8yRNiiQqlIaYZ7GMeMQUhgyo0pxIxXKckZhgmrBCE04LylMsM5ljQvvobNO7svX3WrlGLI3LVVnKStVrJ0jMccwAPHi9AXNbO2eVFitrltK2ArDovAnReROdDtHpEJ034b0JJjpvvuF0e0o670RbWeXG7WriKCIxYI99bDBPKbGo17byAsTT5OX5do69XkhxN8xHX_ub4e-Hf174AUa9heY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25905711</pqid></control><display><type>article</type><title>Theoretical Study of Stability Criteria for X-Bracing Systems</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Wang, Dong Q ; Boresi, Arthur P</creator><creatorcontrib>Wang, Dong Q ; Boresi, Arthur P</creatorcontrib><description>Using a theoretical approach, stability criteria for X-bracing systems are formulated. For two different end constraints, simple closed-form relationships are presented for calculating the critical compressive load. As a design aid, curves of the effective length factor versus the ratio T/P, where T and P are tension and compression brace axial forces, respectively, are given. Criteria are formulated for the general case where the tension and compression braces may have different material and geometrical properties. Some important characteristics are revealed: the ratio T/P increases as the effective length factor k decreases; after a certain value at which the compression brace buckles in the second mode, it will remain unchanged. As the flexural rigidity, EtIt of the tension brace increases, the ratio T/P at which buckling occurs in the second mode decreases, and the effective length factor k also decreases. Therefore, it is possible for the compression brace to snap through in the first buckling mode due to a total loss of the tension brace flexural rigidity. However, when the tension brace flexural rigidity reaches a certain value, the compression brace buckles in the second mode.</description><identifier>ISSN: 0733-9399</identifier><identifier>EISSN: 1943-7889</identifier><identifier>DOI: 10.1061/(ASCE)0733-9399(1992)118:7(1357)</identifier><identifier>CODEN: JENMDT</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Building structure ; Buildings. Public works ; Construction (buildings and works) ; Exact sciences and technology ; Metal structure ; TECHNICAL PAPERS</subject><ispartof>Journal of engineering mechanics, 1992-07, Vol.118 (7), p.1357-1364</ispartof><rights>Copyright © 1992 ASCE</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-f16e3c686d64def159b5a4947e01b13ef92ae7c0b2520367df293d3980abac023</citedby><cites>FETCH-LOGICAL-a412t-f16e3c686d64def159b5a4947e01b13ef92ae7c0b2520367df293d3980abac023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9399(1992)118:7(1357)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9399(1992)118:7(1357)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75936,75944</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5442510$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Dong Q</creatorcontrib><creatorcontrib>Boresi, Arthur P</creatorcontrib><title>Theoretical Study of Stability Criteria for X-Bracing Systems</title><title>Journal of engineering mechanics</title><description>Using a theoretical approach, stability criteria for X-bracing systems are formulated. For two different end constraints, simple closed-form relationships are presented for calculating the critical compressive load. As a design aid, curves of the effective length factor versus the ratio T/P, where T and P are tension and compression brace axial forces, respectively, are given. Criteria are formulated for the general case where the tension and compression braces may have different material and geometrical properties. Some important characteristics are revealed: the ratio T/P increases as the effective length factor k decreases; after a certain value at which the compression brace buckles in the second mode, it will remain unchanged. As the flexural rigidity, EtIt of the tension brace increases, the ratio T/P at which buckling occurs in the second mode decreases, and the effective length factor k also decreases. Therefore, it is possible for the compression brace to snap through in the first buckling mode due to a total loss of the tension brace flexural rigidity. However, when the tension brace flexural rigidity reaches a certain value, the compression brace buckles in the second mode.</description><subject>Applied sciences</subject><subject>Building structure</subject><subject>Buildings. Public works</subject><subject>Construction (buildings and works)</subject><subject>Exact sciences and technology</subject><subject>Metal structure</subject><subject>TECHNICAL PAPERS</subject><issn>0733-9399</issn><issn>1943-7889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwHzIg1A4Bn53EMRJCpZQvFRhaJJgsJ7HBVZoUOx3y73Fo6cot9w6P3js9CA0AnwNO4GIwmo0nQ8woDTnlfACckyFAeskGQGM23EM94BENWZryfdTbgYfoyLkFxhAlPOmhq_mXqq1qTC7LYNasizaotQ8yM6Vp2mBsTaOskYGubfAe3liZm-ozmLWuUUt3jA60LJ062e4-erubzMcP4fT1_nE8moYyAtKEGhJF8yRNiiQqlIaYZ7GMeMQUhgyo0pxIxXKckZhgmrBCE04LylMsM5ljQvvobNO7svX3WrlGLI3LVVnKStVrJ0jMccwAPHi9AXNbO2eVFitrltK2ArDovAnReROdDtHpEJ034b0JJjpvvuF0e0o670RbWeXG7WriKCIxYI99bDBPKbGo17byAsTT5OX5do69XkhxN8xHX_ub4e-Hf174AUa9heY</recordid><startdate>19920701</startdate><enddate>19920701</enddate><creator>Wang, Dong Q</creator><creator>Boresi, Arthur P</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>19920701</creationdate><title>Theoretical Study of Stability Criteria for X-Bracing Systems</title><author>Wang, Dong Q ; Boresi, Arthur P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-f16e3c686d64def159b5a4947e01b13ef92ae7c0b2520367df293d3980abac023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Building structure</topic><topic>Buildings. Public works</topic><topic>Construction (buildings and works)</topic><topic>Exact sciences and technology</topic><topic>Metal structure</topic><topic>TECHNICAL PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dong Q</creatorcontrib><creatorcontrib>Boresi, Arthur P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dong Q</au><au>Boresi, Arthur P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Study of Stability Criteria for X-Bracing Systems</atitle><jtitle>Journal of engineering mechanics</jtitle><date>1992-07-01</date><risdate>1992</risdate><volume>118</volume><issue>7</issue><spage>1357</spage><epage>1364</epage><pages>1357-1364</pages><issn>0733-9399</issn><eissn>1943-7889</eissn><coden>JENMDT</coden><abstract>Using a theoretical approach, stability criteria for X-bracing systems are formulated. For two different end constraints, simple closed-form relationships are presented for calculating the critical compressive load. As a design aid, curves of the effective length factor versus the ratio T/P, where T and P are tension and compression brace axial forces, respectively, are given. Criteria are formulated for the general case where the tension and compression braces may have different material and geometrical properties. Some important characteristics are revealed: the ratio T/P increases as the effective length factor k decreases; after a certain value at which the compression brace buckles in the second mode, it will remain unchanged. As the flexural rigidity, EtIt of the tension brace increases, the ratio T/P at which buckling occurs in the second mode decreases, and the effective length factor k also decreases. Therefore, it is possible for the compression brace to snap through in the first buckling mode due to a total loss of the tension brace flexural rigidity. However, when the tension brace flexural rigidity reaches a certain value, the compression brace buckles in the second mode.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9399(1992)118:7(1357)</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9399
ispartof Journal of engineering mechanics, 1992-07, Vol.118 (7), p.1357-1364
issn 0733-9399
1943-7889
language eng
recordid cdi_proquest_miscellaneous_25905711
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Applied sciences
Building structure
Buildings. Public works
Construction (buildings and works)
Exact sciences and technology
Metal structure
TECHNICAL PAPERS
title Theoretical Study of Stability Criteria for X-Bracing Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Study%20of%20Stability%20Criteria%20for%20X-Bracing%20Systems&rft.jtitle=Journal%20of%20engineering%20mechanics&rft.au=Wang,%20Dong%20Q&rft.date=1992-07-01&rft.volume=118&rft.issue=7&rft.spage=1357&rft.epage=1364&rft.pages=1357-1364&rft.issn=0733-9399&rft.eissn=1943-7889&rft.coden=JENMDT&rft_id=info:doi/10.1061/(ASCE)0733-9399(1992)118:7(1357)&rft_dat=%3Cproquest_cross%3E25905711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25905711&rft_id=info:pmid/&rfr_iscdi=true