Flow profiles near receding three-phase contact lines: influence of surfactants

The dynamics of wetting and dewetting is largely determined by the velocity field near the contact lines. For water drops it has been observed that adding surfactant decreases the dynamic receding contact angle even at a concentration much lower than the critical micelle concentration (CMC). To bett...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2021-11, Vol.17 (44), p.19-11
Hauptverfasser: Straub, Benedikt B, Schmidt, Henrik, Rostami, Peyman, Henrich, Franziska, Rossi, Massimiliano, Kähler, Christian J, Butt, Hans-Jürgen, Auernhammer, Günter K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 44
container_start_page 19
container_title Soft matter
container_volume 17
creator Straub, Benedikt B
Schmidt, Henrik
Rostami, Peyman
Henrich, Franziska
Rossi, Massimiliano
Kähler, Christian J
Butt, Hans-Jürgen
Auernhammer, Günter K
description The dynamics of wetting and dewetting is largely determined by the velocity field near the contact lines. For water drops it has been observed that adding surfactant decreases the dynamic receding contact angle even at a concentration much lower than the critical micelle concentration (CMC). To better understand why surfactants have such a drastic effect on drop dynamics, we constructed a dedicated setup on an inverted microscope, in which an aqueous drop is held stationary while the transparent substrate is moved horizontally. Using astigmatism particle tracking velocimetry, we track the 3D displacement of the tracer particles in the flow. We study how surfactants alter the flow dynamics near the receding contact line of a moving drop for capillary numbers in the order of 10 −6 . Even for surfactant concentrations c far below the critical micelle concentration ( c < CMC) Marangoni stresses change the flow drastically. We discuss our results first in a 2D model that considers advective and diffusive surfactant transport and deduce estimates of the magnitude and scaling of the Marangoni stress from this. Modeling and experiment agree that a tiny gradient in surface tension of a few μN m −1 is enough to alter the flow profile significantly. The variation of the Marangoni stress with the distance from the contact line suggests that the 2D advection-diffusion model has to be extended to a full 3D model. The effect is ubiquitous, since surfactant is present in many technical and natural dewetting processes either deliberately or as contamination. The dynamics of dewetting is largely determined by the velocity field near the contact lines. Surfactant laden drops show a strong coupling of the internal hydrodynamic flow and the surfactant dynamics at the liquid-gas interface.
doi_str_mv 10.1039/d1sm01145f
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2590137173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590137173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-358d2d99391439032713ee3622d1f034e43c2298c48a723cbb90c6861329aa063</originalsourceid><addsrcrecordid>eNpdkUFr3DAQhUVJaDbbXnoPCHopATeSRralHAIl6aaBlD0kgdyEVh5nvdjSRrJT-u_j7S4bmtMMvI_HzHuEfOHsO2egzyqeOsa5zOsPZMJLKbNCSXWw3-HxiByntGIMlOTFR3IEsuRS6XJC5rM2_KHrGOqmxUQ92kgjOqwa_0T7ZUTM1kubkLrge-t62jYe0zltfN0O6B3SUNM0xHrUrO_TJ3JY2zbh592ckofZz_vLX9nt_Prm8sdt5iTL-wxyVYlKa9BcgmYgSg6IUAhR8ZqBRAlOCK2cVLYU4BYLzVyhCg5CW8sKmJKLre96WHRYOfR9tK1Zx6az8a8JtjH_K75ZmqfwYlSuy1zJ0eDbziCG5wFTb7omOWxb6zEMyYhcMw4lL2FEv75DV2GIfnxvQymmtR5DnpLTLeViSClivT-GM7PpyVzxu9__epqN8MkWjsntubce4RVzQI1M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598099968</pqid></control><display><type>article</type><title>Flow profiles near receding three-phase contact lines: influence of surfactants</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Straub, Benedikt B ; Schmidt, Henrik ; Rostami, Peyman ; Henrich, Franziska ; Rossi, Massimiliano ; Kähler, Christian J ; Butt, Hans-Jürgen ; Auernhammer, Günter K</creator><creatorcontrib>Straub, Benedikt B ; Schmidt, Henrik ; Rostami, Peyman ; Henrich, Franziska ; Rossi, Massimiliano ; Kähler, Christian J ; Butt, Hans-Jürgen ; Auernhammer, Günter K</creatorcontrib><description>The dynamics of wetting and dewetting is largely determined by the velocity field near the contact lines. For water drops it has been observed that adding surfactant decreases the dynamic receding contact angle even at a concentration much lower than the critical micelle concentration (CMC). To better understand why surfactants have such a drastic effect on drop dynamics, we constructed a dedicated setup on an inverted microscope, in which an aqueous drop is held stationary while the transparent substrate is moved horizontally. Using astigmatism particle tracking velocimetry, we track the 3D displacement of the tracer particles in the flow. We study how surfactants alter the flow dynamics near the receding contact line of a moving drop for capillary numbers in the order of 10 −6 . Even for surfactant concentrations c far below the critical micelle concentration ( c &lt; CMC) Marangoni stresses change the flow drastically. We discuss our results first in a 2D model that considers advective and diffusive surfactant transport and deduce estimates of the magnitude and scaling of the Marangoni stress from this. Modeling and experiment agree that a tiny gradient in surface tension of a few μN m −1 is enough to alter the flow profile significantly. The variation of the Marangoni stress with the distance from the contact line suggests that the 2D advection-diffusion model has to be extended to a full 3D model. The effect is ubiquitous, since surfactant is present in many technical and natural dewetting processes either deliberately or as contamination. The dynamics of dewetting is largely determined by the velocity field near the contact lines. Surfactant laden drops show a strong coupling of the internal hydrodynamic flow and the surfactant dynamics at the liquid-gas interface.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d1sm01145f</identifier><identifier>PMID: 34714897</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Astigmatism ; Chemistry ; Contact angle ; Contact stresses ; Contamination ; Drying ; Flow ; Flow profiles ; Micelles ; Particle tracking ; Particle tracking velocimetry ; Pollutants ; Substrates ; Surface tension ; Surfactants ; Three dimensional models ; Tracer particles ; Two dimensional models ; Velocity distribution ; Water drops ; Wetting</subject><ispartof>Soft matter, 2021-11, Vol.17 (44), p.19-11</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-358d2d99391439032713ee3622d1f034e43c2298c48a723cbb90c6861329aa063</citedby><cites>FETCH-LOGICAL-c405t-358d2d99391439032713ee3622d1f034e43c2298c48a723cbb90c6861329aa063</cites><orcidid>0000-0003-1515-0143 ; 0000-0002-6579-7132 ; 0000-0001-9336-2091 ; 0000-0001-5391-2618 ; 0000-0002-7562-6580 ; 0000-0002-1066-966X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Straub, Benedikt B</creatorcontrib><creatorcontrib>Schmidt, Henrik</creatorcontrib><creatorcontrib>Rostami, Peyman</creatorcontrib><creatorcontrib>Henrich, Franziska</creatorcontrib><creatorcontrib>Rossi, Massimiliano</creatorcontrib><creatorcontrib>Kähler, Christian J</creatorcontrib><creatorcontrib>Butt, Hans-Jürgen</creatorcontrib><creatorcontrib>Auernhammer, Günter K</creatorcontrib><title>Flow profiles near receding three-phase contact lines: influence of surfactants</title><title>Soft matter</title><description>The dynamics of wetting and dewetting is largely determined by the velocity field near the contact lines. For water drops it has been observed that adding surfactant decreases the dynamic receding contact angle even at a concentration much lower than the critical micelle concentration (CMC). To better understand why surfactants have such a drastic effect on drop dynamics, we constructed a dedicated setup on an inverted microscope, in which an aqueous drop is held stationary while the transparent substrate is moved horizontally. Using astigmatism particle tracking velocimetry, we track the 3D displacement of the tracer particles in the flow. We study how surfactants alter the flow dynamics near the receding contact line of a moving drop for capillary numbers in the order of 10 −6 . Even for surfactant concentrations c far below the critical micelle concentration ( c &lt; CMC) Marangoni stresses change the flow drastically. We discuss our results first in a 2D model that considers advective and diffusive surfactant transport and deduce estimates of the magnitude and scaling of the Marangoni stress from this. Modeling and experiment agree that a tiny gradient in surface tension of a few μN m −1 is enough to alter the flow profile significantly. The variation of the Marangoni stress with the distance from the contact line suggests that the 2D advection-diffusion model has to be extended to a full 3D model. The effect is ubiquitous, since surfactant is present in many technical and natural dewetting processes either deliberately or as contamination. The dynamics of dewetting is largely determined by the velocity field near the contact lines. Surfactant laden drops show a strong coupling of the internal hydrodynamic flow and the surfactant dynamics at the liquid-gas interface.</description><subject>Astigmatism</subject><subject>Chemistry</subject><subject>Contact angle</subject><subject>Contact stresses</subject><subject>Contamination</subject><subject>Drying</subject><subject>Flow</subject><subject>Flow profiles</subject><subject>Micelles</subject><subject>Particle tracking</subject><subject>Particle tracking velocimetry</subject><subject>Pollutants</subject><subject>Substrates</subject><subject>Surface tension</subject><subject>Surfactants</subject><subject>Three dimensional models</subject><subject>Tracer particles</subject><subject>Two dimensional models</subject><subject>Velocity distribution</subject><subject>Water drops</subject><subject>Wetting</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkUFr3DAQhUVJaDbbXnoPCHopATeSRralHAIl6aaBlD0kgdyEVh5nvdjSRrJT-u_j7S4bmtMMvI_HzHuEfOHsO2egzyqeOsa5zOsPZMJLKbNCSXWw3-HxiByntGIMlOTFR3IEsuRS6XJC5rM2_KHrGOqmxUQ92kgjOqwa_0T7ZUTM1kubkLrge-t62jYe0zltfN0O6B3SUNM0xHrUrO_TJ3JY2zbh592ckofZz_vLX9nt_Prm8sdt5iTL-wxyVYlKa9BcgmYgSg6IUAhR8ZqBRAlOCK2cVLYU4BYLzVyhCg5CW8sKmJKLre96WHRYOfR9tK1Zx6az8a8JtjH_K75ZmqfwYlSuy1zJ0eDbziCG5wFTb7omOWxb6zEMyYhcMw4lL2FEv75DV2GIfnxvQymmtR5DnpLTLeViSClivT-GM7PpyVzxu9__epqN8MkWjsntubce4RVzQI1M</recordid><startdate>20211117</startdate><enddate>20211117</enddate><creator>Straub, Benedikt B</creator><creator>Schmidt, Henrik</creator><creator>Rostami, Peyman</creator><creator>Henrich, Franziska</creator><creator>Rossi, Massimiliano</creator><creator>Kähler, Christian J</creator><creator>Butt, Hans-Jürgen</creator><creator>Auernhammer, Günter K</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1515-0143</orcidid><orcidid>https://orcid.org/0000-0002-6579-7132</orcidid><orcidid>https://orcid.org/0000-0001-9336-2091</orcidid><orcidid>https://orcid.org/0000-0001-5391-2618</orcidid><orcidid>https://orcid.org/0000-0002-7562-6580</orcidid><orcidid>https://orcid.org/0000-0002-1066-966X</orcidid></search><sort><creationdate>20211117</creationdate><title>Flow profiles near receding three-phase contact lines: influence of surfactants</title><author>Straub, Benedikt B ; Schmidt, Henrik ; Rostami, Peyman ; Henrich, Franziska ; Rossi, Massimiliano ; Kähler, Christian J ; Butt, Hans-Jürgen ; Auernhammer, Günter K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-358d2d99391439032713ee3622d1f034e43c2298c48a723cbb90c6861329aa063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astigmatism</topic><topic>Chemistry</topic><topic>Contact angle</topic><topic>Contact stresses</topic><topic>Contamination</topic><topic>Drying</topic><topic>Flow</topic><topic>Flow profiles</topic><topic>Micelles</topic><topic>Particle tracking</topic><topic>Particle tracking velocimetry</topic><topic>Pollutants</topic><topic>Substrates</topic><topic>Surface tension</topic><topic>Surfactants</topic><topic>Three dimensional models</topic><topic>Tracer particles</topic><topic>Two dimensional models</topic><topic>Velocity distribution</topic><topic>Water drops</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Straub, Benedikt B</creatorcontrib><creatorcontrib>Schmidt, Henrik</creatorcontrib><creatorcontrib>Rostami, Peyman</creatorcontrib><creatorcontrib>Henrich, Franziska</creatorcontrib><creatorcontrib>Rossi, Massimiliano</creatorcontrib><creatorcontrib>Kähler, Christian J</creatorcontrib><creatorcontrib>Butt, Hans-Jürgen</creatorcontrib><creatorcontrib>Auernhammer, Günter K</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Straub, Benedikt B</au><au>Schmidt, Henrik</au><au>Rostami, Peyman</au><au>Henrich, Franziska</au><au>Rossi, Massimiliano</au><au>Kähler, Christian J</au><au>Butt, Hans-Jürgen</au><au>Auernhammer, Günter K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow profiles near receding three-phase contact lines: influence of surfactants</atitle><jtitle>Soft matter</jtitle><date>2021-11-17</date><risdate>2021</risdate><volume>17</volume><issue>44</issue><spage>19</spage><epage>11</epage><pages>19-11</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The dynamics of wetting and dewetting is largely determined by the velocity field near the contact lines. For water drops it has been observed that adding surfactant decreases the dynamic receding contact angle even at a concentration much lower than the critical micelle concentration (CMC). To better understand why surfactants have such a drastic effect on drop dynamics, we constructed a dedicated setup on an inverted microscope, in which an aqueous drop is held stationary while the transparent substrate is moved horizontally. Using astigmatism particle tracking velocimetry, we track the 3D displacement of the tracer particles in the flow. We study how surfactants alter the flow dynamics near the receding contact line of a moving drop for capillary numbers in the order of 10 −6 . Even for surfactant concentrations c far below the critical micelle concentration ( c &lt; CMC) Marangoni stresses change the flow drastically. We discuss our results first in a 2D model that considers advective and diffusive surfactant transport and deduce estimates of the magnitude and scaling of the Marangoni stress from this. Modeling and experiment agree that a tiny gradient in surface tension of a few μN m −1 is enough to alter the flow profile significantly. The variation of the Marangoni stress with the distance from the contact line suggests that the 2D advection-diffusion model has to be extended to a full 3D model. The effect is ubiquitous, since surfactant is present in many technical and natural dewetting processes either deliberately or as contamination. The dynamics of dewetting is largely determined by the velocity field near the contact lines. Surfactant laden drops show a strong coupling of the internal hydrodynamic flow and the surfactant dynamics at the liquid-gas interface.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34714897</pmid><doi>10.1039/d1sm01145f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1515-0143</orcidid><orcidid>https://orcid.org/0000-0002-6579-7132</orcidid><orcidid>https://orcid.org/0000-0001-9336-2091</orcidid><orcidid>https://orcid.org/0000-0001-5391-2618</orcidid><orcidid>https://orcid.org/0000-0002-7562-6580</orcidid><orcidid>https://orcid.org/0000-0002-1066-966X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2021-11, Vol.17 (44), p.19-11
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_2590137173
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Astigmatism
Chemistry
Contact angle
Contact stresses
Contamination
Drying
Flow
Flow profiles
Micelles
Particle tracking
Particle tracking velocimetry
Pollutants
Substrates
Surface tension
Surfactants
Three dimensional models
Tracer particles
Two dimensional models
Velocity distribution
Water drops
Wetting
title Flow profiles near receding three-phase contact lines: influence of surfactants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20profiles%20near%20receding%20three-phase%20contact%20lines:%20influence%20of%20surfactants&rft.jtitle=Soft%20matter&rft.au=Straub,%20Benedikt%20B&rft.date=2021-11-17&rft.volume=17&rft.issue=44&rft.spage=19&rft.epage=11&rft.pages=19-11&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d1sm01145f&rft_dat=%3Cproquest_pubme%3E2590137173%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598099968&rft_id=info:pmid/34714897&rfr_iscdi=true