The model of a neural network visual preprocessor

The model of a neural network visual preprocessor and a system architecture for visual information processing are proposed. The model of the preprocessor is based on the model of a visual cortex iso-orientation domain which is considered as a neural network with retinotopically organized afferent in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 1992, Vol.4 (1), p.93-102
Hauptverfasser: Rybak, Ilya A, Shevtsova, Natalia A, Sandler, Vladislav M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue 1
container_start_page 93
container_title Neurocomputing (Amsterdam)
container_volume 4
creator Rybak, Ilya A
Shevtsova, Natalia A
Sandler, Vladislav M
description The model of a neural network visual preprocessor and a system architecture for visual information processing are proposed. The model of the preprocessor is based on the model of a visual cortex iso-orientation domain which is considered as a neural network with retinotopically organized afferent inputs and anisotropic lateral inhibition formed by feedback connections via inhibitory interneurons. The high-level system uses the preprocessor to process image fragments with different resolutions and to represent the image as a set of contour segments of different sizes.
doi_str_mv 10.1016/0925-2312(92)90047-S
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25899800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>092523129290047S</els_id><sourcerecordid>25899800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-d0cd68b6339071d1d123e8f8170e810be0ba7b430172b736dd0cb15c344ae7813</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoPPPQkeqhOkrZJLoIsfsGCh13PIU2mWO1u1qRd8d-bUvEoMzAMvPdm3iPknMI1BVrdgGJlzjhll4pdKYBC5KsDMqNSsFwyWR2S2R_kmJzE-A5ABWVqRuj6DbONd9hlvslMtsUhmC6N_suHj2zfxiGtu4C74C3G6MMpOWpMF_Hsd87J68P9evGUL18enxd3y9xyXva5A-sqWVecKxDUpWIcZSOpAJQUaoTaiLrg6RFWC165RKhpaXlRGBSS8jm5mHTT5c8BY683bbTYdWaLfoialVIpCZCAxQS0wccYsNG70G5M-NYU9JiPHs3r0bxWqcd89CrRbicaJhP7FoOOtsWtRdcGtL12vv1f4Adc62tE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25899800</pqid></control><display><type>article</type><title>The model of a neural network visual preprocessor</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Rybak, Ilya A ; Shevtsova, Natalia A ; Sandler, Vladislav M</creator><creatorcontrib>Rybak, Ilya A ; Shevtsova, Natalia A ; Sandler, Vladislav M</creatorcontrib><description>The model of a neural network visual preprocessor and a system architecture for visual information processing are proposed. The model of the preprocessor is based on the model of a visual cortex iso-orientation domain which is considered as a neural network with retinotopically organized afferent inputs and anisotropic lateral inhibition formed by feedback connections via inhibitory interneurons. The high-level system uses the preprocessor to process image fragments with different resolutions and to represent the image as a set of contour segments of different sizes.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/0925-2312(92)90047-S</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>inhibitory interneurons ; visual information processing ; Visual preprocessor</subject><ispartof>Neurocomputing (Amsterdam), 1992, Vol.4 (1), p.93-102</ispartof><rights>1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-d0cd68b6339071d1d123e8f8170e810be0ba7b430172b736dd0cb15c344ae7813</citedby><cites>FETCH-LOGICAL-c335t-d0cd68b6339071d1d123e8f8170e810be0ba7b430172b736dd0cb15c344ae7813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0925-2312(92)90047-S$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,4023,27922,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Rybak, Ilya A</creatorcontrib><creatorcontrib>Shevtsova, Natalia A</creatorcontrib><creatorcontrib>Sandler, Vladislav M</creatorcontrib><title>The model of a neural network visual preprocessor</title><title>Neurocomputing (Amsterdam)</title><description>The model of a neural network visual preprocessor and a system architecture for visual information processing are proposed. The model of the preprocessor is based on the model of a visual cortex iso-orientation domain which is considered as a neural network with retinotopically organized afferent inputs and anisotropic lateral inhibition formed by feedback connections via inhibitory interneurons. The high-level system uses the preprocessor to process image fragments with different resolutions and to represent the image as a set of contour segments of different sizes.</description><subject>inhibitory interneurons</subject><subject>visual information processing</subject><subject>Visual preprocessor</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoPPPQkeqhOkrZJLoIsfsGCh13PIU2mWO1u1qRd8d-bUvEoMzAMvPdm3iPknMI1BVrdgGJlzjhll4pdKYBC5KsDMqNSsFwyWR2S2R_kmJzE-A5ABWVqRuj6DbONd9hlvslMtsUhmC6N_suHj2zfxiGtu4C74C3G6MMpOWpMF_Hsd87J68P9evGUL18enxd3y9xyXva5A-sqWVecKxDUpWIcZSOpAJQUaoTaiLrg6RFWC165RKhpaXlRGBSS8jm5mHTT5c8BY683bbTYdWaLfoialVIpCZCAxQS0wccYsNG70G5M-NYU9JiPHs3r0bxWqcd89CrRbicaJhP7FoOOtsWtRdcGtL12vv1f4Adc62tE</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Rybak, Ilya A</creator><creator>Shevtsova, Natalia A</creator><creator>Sandler, Vladislav M</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1992</creationdate><title>The model of a neural network visual preprocessor</title><author>Rybak, Ilya A ; Shevtsova, Natalia A ; Sandler, Vladislav M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-d0cd68b6339071d1d123e8f8170e810be0ba7b430172b736dd0cb15c344ae7813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>inhibitory interneurons</topic><topic>visual information processing</topic><topic>Visual preprocessor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rybak, Ilya A</creatorcontrib><creatorcontrib>Shevtsova, Natalia A</creatorcontrib><creatorcontrib>Sandler, Vladislav M</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rybak, Ilya A</au><au>Shevtsova, Natalia A</au><au>Sandler, Vladislav M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The model of a neural network visual preprocessor</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>1992</date><risdate>1992</risdate><volume>4</volume><issue>1</issue><spage>93</spage><epage>102</epage><pages>93-102</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>The model of a neural network visual preprocessor and a system architecture for visual information processing are proposed. The model of the preprocessor is based on the model of a visual cortex iso-orientation domain which is considered as a neural network with retinotopically organized afferent inputs and anisotropic lateral inhibition formed by feedback connections via inhibitory interneurons. The high-level system uses the preprocessor to process image fragments with different resolutions and to represent the image as a set of contour segments of different sizes.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0925-2312(92)90047-S</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 1992, Vol.4 (1), p.93-102
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_25899800
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects inhibitory interneurons
visual information processing
Visual preprocessor
title The model of a neural network visual preprocessor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20model%20of%20a%20neural%20network%20visual%20preprocessor&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Rybak,%20Ilya%20A&rft.date=1992&rft.volume=4&rft.issue=1&rft.spage=93&rft.epage=102&rft.pages=93-102&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/0925-2312(92)90047-S&rft_dat=%3Cproquest_cross%3E25899800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25899800&rft_id=info:pmid/&rft_els_id=092523129290047S&rfr_iscdi=true