Understanding Microbial Arsenic-Mobilization in Multiple Aquifers: Insight from DNA and RNA Analyses

Biogeochemical processes critically control the groundwater arsenic (As) enrichment; however, the key active As-mobilizing biogeochemical processes and associated microbes in high dissolved As and sulfate aquifers are poorly understood. To address this issue, the groundwater-sediment geochemistry, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-11, Vol.55 (22), p.15181-15195
Hauptverfasser: Xiu, Wei, Ke, Tiantian, Lloyd, Jonathan R, Shen, Jiaxing, Bassil, Naji M, Song, Hokyung, Polya, David A, Zhao, Yi, Guo, Huaming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15195
container_issue 22
container_start_page 15181
container_title Environmental science & technology
container_volume 55
creator Xiu, Wei
Ke, Tiantian
Lloyd, Jonathan R
Shen, Jiaxing
Bassil, Naji M
Song, Hokyung
Polya, David A
Zhao, Yi
Guo, Huaming
description Biogeochemical processes critically control the groundwater arsenic (As) enrichment; however, the key active As-mobilizing biogeochemical processes and associated microbes in high dissolved As and sulfate aquifers are poorly understood. To address this issue, the groundwater-sediment geochemistry, total and active microbial communities, and their potential functions in the groundwater-sediment microbiota from the western Hetao basin were determined using 16S rRNA gene (rDNA) and associated 16S rRNA (rRNA) sequencing. The relative abundances of either sediment or groundwater total and active microbial communities were positively correlated. Interestingly, groundwater active microbial communities were mainly associated with ammonium and sulfide, while sediment active communities were highly related to water-extractable nitrate. Both sediment-sourced and groundwater-sourced active microorganisms (rRNA/rDNA ratios > 1) noted Fe­(III)-reducers (induced by ammonium oxidation) and As­(V)-reducers, emphasizing the As mobilization via Fe­(III) and/or As­(V) reduction. Moreover, active cryptic sulfur cycling between groundwater and sediments was implicated in affecting As mobilization. Sediment-sourced active microorganisms were potentially involved in anaerobic pyrite oxidation (driven by denitrification), while groundwater-sourced organisms were associated with sulfur disproportionation and sulfate reduction. This study provides an extended whole-picture concept model of active As–N–S–Fe biogeochemical processes affecting As mobilization in high dissolved As and sulfate aquifers.
doi_str_mv 10.1021/acs.est.1c04117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2587765526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599635159</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-d78916c2394e1934e563b48564062a234c1e935d618a97de486311292cfd820b3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKdnrwEvgnTmJU2aeCvz12BTEAVvJWtTzejSLWkP8683ZeJB8PR4vM_3y-OD0DmQCRAK17oMExO6CZQkBcgO0Ag4JQmXHA7RiBBgiWLi_RidhLAihFBG5AhVb64yPnTaVdZ94IUtfbu0usG5D8bZMlnEtbFfurOtw9bhRd90dtMYnG97W8foDZ65YD8-O1z7do1vn3Icy_BLnLnTzS6YcIqOat0Ec_Yzx-jt_u51-pjMnx9m03yeaMZkl1SZVCBKylRqQLHUcMGWqeQiJYJqytISjGK8EiC1yiqTSsEAqKJlXUlKlmyMLve9G99u-yijWNtQmqbRzrR9KCiXWSY4pyKiF3_QVdv7-O9AKSUYB64idb2nopUQvKmLjbdr7XcFkGKwXkTrxZD-sR4TV_vEcPit_I_-BnXEgzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599635159</pqid></control><display><type>article</type><title>Understanding Microbial Arsenic-Mobilization in Multiple Aquifers: Insight from DNA and RNA Analyses</title><source>American Chemical Society Journals</source><creator>Xiu, Wei ; Ke, Tiantian ; Lloyd, Jonathan R ; Shen, Jiaxing ; Bassil, Naji M ; Song, Hokyung ; Polya, David A ; Zhao, Yi ; Guo, Huaming</creator><creatorcontrib>Xiu, Wei ; Ke, Tiantian ; Lloyd, Jonathan R ; Shen, Jiaxing ; Bassil, Naji M ; Song, Hokyung ; Polya, David A ; Zhao, Yi ; Guo, Huaming</creatorcontrib><description>Biogeochemical processes critically control the groundwater arsenic (As) enrichment; however, the key active As-mobilizing biogeochemical processes and associated microbes in high dissolved As and sulfate aquifers are poorly understood. To address this issue, the groundwater-sediment geochemistry, total and active microbial communities, and their potential functions in the groundwater-sediment microbiota from the western Hetao basin were determined using 16S rRNA gene (rDNA) and associated 16S rRNA (rRNA) sequencing. The relative abundances of either sediment or groundwater total and active microbial communities were positively correlated. Interestingly, groundwater active microbial communities were mainly associated with ammonium and sulfide, while sediment active communities were highly related to water-extractable nitrate. Both sediment-sourced and groundwater-sourced active microorganisms (rRNA/rDNA ratios &gt; 1) noted Fe­(III)-reducers (induced by ammonium oxidation) and As­(V)-reducers, emphasizing the As mobilization via Fe­(III) and/or As­(V) reduction. Moreover, active cryptic sulfur cycling between groundwater and sediments was implicated in affecting As mobilization. Sediment-sourced active microorganisms were potentially involved in anaerobic pyrite oxidation (driven by denitrification), while groundwater-sourced organisms were associated with sulfur disproportionation and sulfate reduction. This study provides an extended whole-picture concept model of active As–N–S–Fe biogeochemical processes affecting As mobilization in high dissolved As and sulfate aquifers.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.1c04117</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Ammonium ; Anaerobic microorganisms ; Aquifers ; Arsenic ; Biogeochemistry ; Contaminants in Aquatic and Terrestrial Environments ; Denitrification ; Disproportionation ; Geochemistry ; Groundwater ; Iron ; Microbial activity ; Microbiota ; Microorganisms ; Oxidation ; Pyrite ; rRNA 16S ; Sediments ; Sulfate reduction ; Sulfates ; Sulfur</subject><ispartof>Environmental science &amp; technology, 2021-11, Vol.55 (22), p.15181-15195</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 16, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-d78916c2394e1934e563b48564062a234c1e935d618a97de486311292cfd820b3</citedby><cites>FETCH-LOGICAL-a338t-d78916c2394e1934e563b48564062a234c1e935d618a97de486311292cfd820b3</cites><orcidid>0000-0002-4408-8775 ; 0000-0003-4065-5725 ; 0000-0002-4169-0912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.1c04117$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.1c04117$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Xiu, Wei</creatorcontrib><creatorcontrib>Ke, Tiantian</creatorcontrib><creatorcontrib>Lloyd, Jonathan R</creatorcontrib><creatorcontrib>Shen, Jiaxing</creatorcontrib><creatorcontrib>Bassil, Naji M</creatorcontrib><creatorcontrib>Song, Hokyung</creatorcontrib><creatorcontrib>Polya, David A</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Guo, Huaming</creatorcontrib><title>Understanding Microbial Arsenic-Mobilization in Multiple Aquifers: Insight from DNA and RNA Analyses</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Biogeochemical processes critically control the groundwater arsenic (As) enrichment; however, the key active As-mobilizing biogeochemical processes and associated microbes in high dissolved As and sulfate aquifers are poorly understood. To address this issue, the groundwater-sediment geochemistry, total and active microbial communities, and their potential functions in the groundwater-sediment microbiota from the western Hetao basin were determined using 16S rRNA gene (rDNA) and associated 16S rRNA (rRNA) sequencing. The relative abundances of either sediment or groundwater total and active microbial communities were positively correlated. Interestingly, groundwater active microbial communities were mainly associated with ammonium and sulfide, while sediment active communities were highly related to water-extractable nitrate. Both sediment-sourced and groundwater-sourced active microorganisms (rRNA/rDNA ratios &gt; 1) noted Fe­(III)-reducers (induced by ammonium oxidation) and As­(V)-reducers, emphasizing the As mobilization via Fe­(III) and/or As­(V) reduction. Moreover, active cryptic sulfur cycling between groundwater and sediments was implicated in affecting As mobilization. Sediment-sourced active microorganisms were potentially involved in anaerobic pyrite oxidation (driven by denitrification), while groundwater-sourced organisms were associated with sulfur disproportionation and sulfate reduction. This study provides an extended whole-picture concept model of active As–N–S–Fe biogeochemical processes affecting As mobilization in high dissolved As and sulfate aquifers.</description><subject>Ammonium</subject><subject>Anaerobic microorganisms</subject><subject>Aquifers</subject><subject>Arsenic</subject><subject>Biogeochemistry</subject><subject>Contaminants in Aquatic and Terrestrial Environments</subject><subject>Denitrification</subject><subject>Disproportionation</subject><subject>Geochemistry</subject><subject>Groundwater</subject><subject>Iron</subject><subject>Microbial activity</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Oxidation</subject><subject>Pyrite</subject><subject>rRNA 16S</subject><subject>Sediments</subject><subject>Sulfate reduction</subject><subject>Sulfates</subject><subject>Sulfur</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKdnrwEvgnTmJU2aeCvz12BTEAVvJWtTzejSLWkP8683ZeJB8PR4vM_3y-OD0DmQCRAK17oMExO6CZQkBcgO0Ag4JQmXHA7RiBBgiWLi_RidhLAihFBG5AhVb64yPnTaVdZ94IUtfbu0usG5D8bZMlnEtbFfurOtw9bhRd90dtMYnG97W8foDZ65YD8-O1z7do1vn3Icy_BLnLnTzS6YcIqOat0Ec_Yzx-jt_u51-pjMnx9m03yeaMZkl1SZVCBKylRqQLHUcMGWqeQiJYJqytISjGK8EiC1yiqTSsEAqKJlXUlKlmyMLve9G99u-yijWNtQmqbRzrR9KCiXWSY4pyKiF3_QVdv7-O9AKSUYB64idb2nopUQvKmLjbdr7XcFkGKwXkTrxZD-sR4TV_vEcPit_I_-BnXEgzc</recordid><startdate>20211116</startdate><enddate>20211116</enddate><creator>Xiu, Wei</creator><creator>Ke, Tiantian</creator><creator>Lloyd, Jonathan R</creator><creator>Shen, Jiaxing</creator><creator>Bassil, Naji M</creator><creator>Song, Hokyung</creator><creator>Polya, David A</creator><creator>Zhao, Yi</creator><creator>Guo, Huaming</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4408-8775</orcidid><orcidid>https://orcid.org/0000-0003-4065-5725</orcidid><orcidid>https://orcid.org/0000-0002-4169-0912</orcidid></search><sort><creationdate>20211116</creationdate><title>Understanding Microbial Arsenic-Mobilization in Multiple Aquifers: Insight from DNA and RNA Analyses</title><author>Xiu, Wei ; Ke, Tiantian ; Lloyd, Jonathan R ; Shen, Jiaxing ; Bassil, Naji M ; Song, Hokyung ; Polya, David A ; Zhao, Yi ; Guo, Huaming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-d78916c2394e1934e563b48564062a234c1e935d618a97de486311292cfd820b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonium</topic><topic>Anaerobic microorganisms</topic><topic>Aquifers</topic><topic>Arsenic</topic><topic>Biogeochemistry</topic><topic>Contaminants in Aquatic and Terrestrial Environments</topic><topic>Denitrification</topic><topic>Disproportionation</topic><topic>Geochemistry</topic><topic>Groundwater</topic><topic>Iron</topic><topic>Microbial activity</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Oxidation</topic><topic>Pyrite</topic><topic>rRNA 16S</topic><topic>Sediments</topic><topic>Sulfate reduction</topic><topic>Sulfates</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiu, Wei</creatorcontrib><creatorcontrib>Ke, Tiantian</creatorcontrib><creatorcontrib>Lloyd, Jonathan R</creatorcontrib><creatorcontrib>Shen, Jiaxing</creatorcontrib><creatorcontrib>Bassil, Naji M</creatorcontrib><creatorcontrib>Song, Hokyung</creatorcontrib><creatorcontrib>Polya, David A</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Guo, Huaming</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiu, Wei</au><au>Ke, Tiantian</au><au>Lloyd, Jonathan R</au><au>Shen, Jiaxing</au><au>Bassil, Naji M</au><au>Song, Hokyung</au><au>Polya, David A</au><au>Zhao, Yi</au><au>Guo, Huaming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Microbial Arsenic-Mobilization in Multiple Aquifers: Insight from DNA and RNA Analyses</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2021-11-16</date><risdate>2021</risdate><volume>55</volume><issue>22</issue><spage>15181</spage><epage>15195</epage><pages>15181-15195</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Biogeochemical processes critically control the groundwater arsenic (As) enrichment; however, the key active As-mobilizing biogeochemical processes and associated microbes in high dissolved As and sulfate aquifers are poorly understood. To address this issue, the groundwater-sediment geochemistry, total and active microbial communities, and their potential functions in the groundwater-sediment microbiota from the western Hetao basin were determined using 16S rRNA gene (rDNA) and associated 16S rRNA (rRNA) sequencing. The relative abundances of either sediment or groundwater total and active microbial communities were positively correlated. Interestingly, groundwater active microbial communities were mainly associated with ammonium and sulfide, while sediment active communities were highly related to water-extractable nitrate. Both sediment-sourced and groundwater-sourced active microorganisms (rRNA/rDNA ratios &gt; 1) noted Fe­(III)-reducers (induced by ammonium oxidation) and As­(V)-reducers, emphasizing the As mobilization via Fe­(III) and/or As­(V) reduction. Moreover, active cryptic sulfur cycling between groundwater and sediments was implicated in affecting As mobilization. Sediment-sourced active microorganisms were potentially involved in anaerobic pyrite oxidation (driven by denitrification), while groundwater-sourced organisms were associated with sulfur disproportionation and sulfate reduction. This study provides an extended whole-picture concept model of active As–N–S–Fe biogeochemical processes affecting As mobilization in high dissolved As and sulfate aquifers.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.1c04117</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4408-8775</orcidid><orcidid>https://orcid.org/0000-0003-4065-5725</orcidid><orcidid>https://orcid.org/0000-0002-4169-0912</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2021-11, Vol.55 (22), p.15181-15195
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2587765526
source American Chemical Society Journals
subjects Ammonium
Anaerobic microorganisms
Aquifers
Arsenic
Biogeochemistry
Contaminants in Aquatic and Terrestrial Environments
Denitrification
Disproportionation
Geochemistry
Groundwater
Iron
Microbial activity
Microbiota
Microorganisms
Oxidation
Pyrite
rRNA 16S
Sediments
Sulfate reduction
Sulfates
Sulfur
title Understanding Microbial Arsenic-Mobilization in Multiple Aquifers: Insight from DNA and RNA Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Microbial%20Arsenic-Mobilization%20in%20Multiple%20Aquifers:%20Insight%20from%20DNA%20and%20RNA%20Analyses&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Xiu,%20Wei&rft.date=2021-11-16&rft.volume=55&rft.issue=22&rft.spage=15181&rft.epage=15195&rft.pages=15181-15195&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.1c04117&rft_dat=%3Cproquest_cross%3E2599635159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599635159&rft_id=info:pmid/&rfr_iscdi=true