Standalone 2‑D Nanosheets and the Consequent Hydrogel and Coacervate Phases Formed by 2.5 nm Spherical U60 Molecular Clusters in Dilute Aqueous Solution

Unexpected hydrogel and coacervate are observed for dilute (1 mM) uranyl peroxide molecular cluster (Li68K12(OH)20[UO2(O2)­(OH)]60, U60) solution in the presence of di- or trivalent salts. We report the mechanism as the formation of anisotropic two-dimensional (2-D) single-layer nanosheets, driven b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2021-11, Vol.125 (44), p.12392-12397
Hauptverfasser: Yang, Yuqing, Zhou, Yifan, Chen, Jiahui, Kohlgruber, Tsuyoshi, Smith, Travis, Zheng, Bowen, Szymanowski, Jennifer E. S, Burns, Peter C, Liu, Tianbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12397
container_issue 44
container_start_page 12392
container_title The journal of physical chemistry. B
container_volume 125
creator Yang, Yuqing
Zhou, Yifan
Chen, Jiahui
Kohlgruber, Tsuyoshi
Smith, Travis
Zheng, Bowen
Szymanowski, Jennifer E. S
Burns, Peter C
Liu, Tianbo
description Unexpected hydrogel and coacervate are observed for dilute (1 mM) uranyl peroxide molecular cluster (Li68K12(OH)20[UO2(O2)­(OH)]60, U60) solution in the presence of di- or trivalent salts. We report the mechanism as the formation of anisotropic two-dimensional (2-D) single-layer nanosheets, driven by counterion-mediated attraction due to the size disparity between U60 and small counterions. With weak monovalent cations, the nanosheets are bendable, resulting in hollow, spherical blackberry-type supramolecular assemblies in a homogeneous solution. With extra strong divalent or trivalent cations, the tough, free-standing sheets lead to gelation at ∼1 mM U60. These stiff nanosheets are difficult to bend into spherical blackberry-type structures; instead, they stay in solution and form hydrogel based on their significant excluded volumes. At higher ionic strength, the large, thin filmlike nanosheet structures stack together more compactly and consequently lead to the transition from gel phase to a coacervate phase, another surprise since it was formed without the presence of bulky polycations.
doi_str_mv 10.1021/acs.jpcb.1c08019
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2587753356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587753356</sourcerecordid><originalsourceid>FETCH-LOGICAL-a706-faa3243ccd1928eaa0a0fc4ead399f0fb1076a4f8038bd09a82c1c610ea1cfa63</originalsourceid><addsrcrecordid>eNotUblOw0AQtRBInD3llBTEzK7jq0SGABKXFKit8XqMHW12g9dGSscv0PJ5fAkbSDGa4z3NPM0LglOBoUApLki5cLFSVSgUZijyneBAxBInPtLdbZ0ITPaDQ-cWiDKWWXIQfM8HMjVpaxjkz-fXFTySsa5lHhx4BIaWobDG8fvIZoDbdd3bN9Z_WGFJcf9BA8NzS44dzGy_5BqqNcgwBrOE-arlvlOk4TVBeLCa1aiph0KPbuDeQWfgqtOjX3HpL9jRwdz6trPmONhrSDs-2eaj4GV2_VLcTu6fbu6Ky_sJpZhMGqJITiOlapHLjImQsFFTpjrK8wabSmCa0LTJMMqqGnPKpBLKf4JJqIaS6Cg4-1-76q1X4IZy2TnFWpPZyCllnKVpHEXxhnr-T_XPLhd27I3XVQosNw6Uf0PvQLl1IPoF7_F94A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2587753356</pqid></control><display><type>article</type><title>Standalone 2‑D Nanosheets and the Consequent Hydrogel and Coacervate Phases Formed by 2.5 nm Spherical U60 Molecular Clusters in Dilute Aqueous Solution</title><source>ACS_美国化学学会期刊(与NSTL共建)</source><creator>Yang, Yuqing ; Zhou, Yifan ; Chen, Jiahui ; Kohlgruber, Tsuyoshi ; Smith, Travis ; Zheng, Bowen ; Szymanowski, Jennifer E. S ; Burns, Peter C ; Liu, Tianbo</creator><creatorcontrib>Yang, Yuqing ; Zhou, Yifan ; Chen, Jiahui ; Kohlgruber, Tsuyoshi ; Smith, Travis ; Zheng, Bowen ; Szymanowski, Jennifer E. S ; Burns, Peter C ; Liu, Tianbo</creatorcontrib><description>Unexpected hydrogel and coacervate are observed for dilute (1 mM) uranyl peroxide molecular cluster (Li68K12(OH)20[UO2(O2)­(OH)]60, U60) solution in the presence of di- or trivalent salts. We report the mechanism as the formation of anisotropic two-dimensional (2-D) single-layer nanosheets, driven by counterion-mediated attraction due to the size disparity between U60 and small counterions. With weak monovalent cations, the nanosheets are bendable, resulting in hollow, spherical blackberry-type supramolecular assemblies in a homogeneous solution. With extra strong divalent or trivalent cations, the tough, free-standing sheets lead to gelation at ∼1 mM U60. These stiff nanosheets are difficult to bend into spherical blackberry-type structures; instead, they stay in solution and form hydrogel based on their significant excluded volumes. At higher ionic strength, the large, thin filmlike nanosheet structures stack together more compactly and consequently lead to the transition from gel phase to a coacervate phase, another surprise since it was formed without the presence of bulky polycations.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.1c08019</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</subject><ispartof>The journal of physical chemistry. B, 2021-11, Vol.125 (44), p.12392-12397</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2319-9628 ; 0000-0002-5407-5740 ; 0000-0002-8181-1790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.1c08019$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.1c08019$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Yang, Yuqing</creatorcontrib><creatorcontrib>Zhou, Yifan</creatorcontrib><creatorcontrib>Chen, Jiahui</creatorcontrib><creatorcontrib>Kohlgruber, Tsuyoshi</creatorcontrib><creatorcontrib>Smith, Travis</creatorcontrib><creatorcontrib>Zheng, Bowen</creatorcontrib><creatorcontrib>Szymanowski, Jennifer E. S</creatorcontrib><creatorcontrib>Burns, Peter C</creatorcontrib><creatorcontrib>Liu, Tianbo</creatorcontrib><title>Standalone 2‑D Nanosheets and the Consequent Hydrogel and Coacervate Phases Formed by 2.5 nm Spherical U60 Molecular Clusters in Dilute Aqueous Solution</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Unexpected hydrogel and coacervate are observed for dilute (1 mM) uranyl peroxide molecular cluster (Li68K12(OH)20[UO2(O2)­(OH)]60, U60) solution in the presence of di- or trivalent salts. We report the mechanism as the formation of anisotropic two-dimensional (2-D) single-layer nanosheets, driven by counterion-mediated attraction due to the size disparity between U60 and small counterions. With weak monovalent cations, the nanosheets are bendable, resulting in hollow, spherical blackberry-type supramolecular assemblies in a homogeneous solution. With extra strong divalent or trivalent cations, the tough, free-standing sheets lead to gelation at ∼1 mM U60. These stiff nanosheets are difficult to bend into spherical blackberry-type structures; instead, they stay in solution and form hydrogel based on their significant excluded volumes. At higher ionic strength, the large, thin filmlike nanosheet structures stack together more compactly and consequently lead to the transition from gel phase to a coacervate phase, another surprise since it was formed without the presence of bulky polycations.</description><subject>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotUblOw0AQtRBInD3llBTEzK7jq0SGABKXFKit8XqMHW12g9dGSscv0PJ5fAkbSDGa4z3NPM0LglOBoUApLki5cLFSVSgUZijyneBAxBInPtLdbZ0ITPaDQ-cWiDKWWXIQfM8HMjVpaxjkz-fXFTySsa5lHhx4BIaWobDG8fvIZoDbdd3bN9Z_WGFJcf9BA8NzS44dzGy_5BqqNcgwBrOE-arlvlOk4TVBeLCa1aiph0KPbuDeQWfgqtOjX3HpL9jRwdz6trPmONhrSDs-2eaj4GV2_VLcTu6fbu6Ky_sJpZhMGqJITiOlapHLjImQsFFTpjrK8wabSmCa0LTJMMqqGnPKpBLKf4JJqIaS6Cg4-1-76q1X4IZy2TnFWpPZyCllnKVpHEXxhnr-T_XPLhd27I3XVQosNw6Uf0PvQLl1IPoF7_F94A</recordid><startdate>20211111</startdate><enddate>20211111</enddate><creator>Yang, Yuqing</creator><creator>Zhou, Yifan</creator><creator>Chen, Jiahui</creator><creator>Kohlgruber, Tsuyoshi</creator><creator>Smith, Travis</creator><creator>Zheng, Bowen</creator><creator>Szymanowski, Jennifer E. S</creator><creator>Burns, Peter C</creator><creator>Liu, Tianbo</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2319-9628</orcidid><orcidid>https://orcid.org/0000-0002-5407-5740</orcidid><orcidid>https://orcid.org/0000-0002-8181-1790</orcidid></search><sort><creationdate>20211111</creationdate><title>Standalone 2‑D Nanosheets and the Consequent Hydrogel and Coacervate Phases Formed by 2.5 nm Spherical U60 Molecular Clusters in Dilute Aqueous Solution</title><author>Yang, Yuqing ; Zhou, Yifan ; Chen, Jiahui ; Kohlgruber, Tsuyoshi ; Smith, Travis ; Zheng, Bowen ; Szymanowski, Jennifer E. S ; Burns, Peter C ; Liu, Tianbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a706-faa3243ccd1928eaa0a0fc4ead399f0fb1076a4f8038bd09a82c1c610ea1cfa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuqing</creatorcontrib><creatorcontrib>Zhou, Yifan</creatorcontrib><creatorcontrib>Chen, Jiahui</creatorcontrib><creatorcontrib>Kohlgruber, Tsuyoshi</creatorcontrib><creatorcontrib>Smith, Travis</creatorcontrib><creatorcontrib>Zheng, Bowen</creatorcontrib><creatorcontrib>Szymanowski, Jennifer E. S</creatorcontrib><creatorcontrib>Burns, Peter C</creatorcontrib><creatorcontrib>Liu, Tianbo</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuqing</au><au>Zhou, Yifan</au><au>Chen, Jiahui</au><au>Kohlgruber, Tsuyoshi</au><au>Smith, Travis</au><au>Zheng, Bowen</au><au>Szymanowski, Jennifer E. S</au><au>Burns, Peter C</au><au>Liu, Tianbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Standalone 2‑D Nanosheets and the Consequent Hydrogel and Coacervate Phases Formed by 2.5 nm Spherical U60 Molecular Clusters in Dilute Aqueous Solution</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2021-11-11</date><risdate>2021</risdate><volume>125</volume><issue>44</issue><spage>12392</spage><epage>12397</epage><pages>12392-12397</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Unexpected hydrogel and coacervate are observed for dilute (1 mM) uranyl peroxide molecular cluster (Li68K12(OH)20[UO2(O2)­(OH)]60, U60) solution in the presence of di- or trivalent salts. We report the mechanism as the formation of anisotropic two-dimensional (2-D) single-layer nanosheets, driven by counterion-mediated attraction due to the size disparity between U60 and small counterions. With weak monovalent cations, the nanosheets are bendable, resulting in hollow, spherical blackberry-type supramolecular assemblies in a homogeneous solution. With extra strong divalent or trivalent cations, the tough, free-standing sheets lead to gelation at ∼1 mM U60. These stiff nanosheets are difficult to bend into spherical blackberry-type structures; instead, they stay in solution and form hydrogel based on their significant excluded volumes. At higher ionic strength, the large, thin filmlike nanosheet structures stack together more compactly and consequently lead to the transition from gel phase to a coacervate phase, another surprise since it was formed without the presence of bulky polycations.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcb.1c08019</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2319-9628</orcidid><orcidid>https://orcid.org/0000-0002-5407-5740</orcidid><orcidid>https://orcid.org/0000-0002-8181-1790</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2021-11, Vol.125 (44), p.12392-12397
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2587753356
source ACS_美国化学学会期刊(与NSTL共建)
subjects B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials
title Standalone 2‑D Nanosheets and the Consequent Hydrogel and Coacervate Phases Formed by 2.5 nm Spherical U60 Molecular Clusters in Dilute Aqueous Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Standalone%202%E2%80%91D%20Nanosheets%20and%20the%20Consequent%20Hydrogel%20and%20Coacervate%20Phases%20Formed%20by%202.5%20nm%20Spherical%20U60%20Molecular%20Clusters%20in%20Dilute%20Aqueous%20Solution&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Yang,%20Yuqing&rft.date=2021-11-11&rft.volume=125&rft.issue=44&rft.spage=12392&rft.epage=12397&rft.pages=12392-12397&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.1c08019&rft_dat=%3Cproquest_acs_j%3E2587753356%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2587753356&rft_id=info:pmid/&rfr_iscdi=true