Singularities of principal direction fields from 3-D images

Generic singularities can provide position-independent information about the qualitative shape of surfaces. The authors determine the singularities of the principal direction fields of a surface (its umbilic points) from a computation of the index of the fields. The authors present examples both for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1992-03, Vol.14 (3), p.309-317
Hauptverfasser: Sander, P.T., Zucker, S.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue 3
container_start_page 309
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 14
creator Sander, P.T.
Zucker, S.W.
description Generic singularities can provide position-independent information about the qualitative shape of surfaces. The authors determine the singularities of the principal direction fields of a surface (its umbilic points) from a computation of the index of the fields. The authors present examples both for 3-D synthetic images to which noise has been added and for clinical magnetic resonance images.< >
doi_str_mv 10.1109/34.120326
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_25870999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>120326</ieee_id><sourcerecordid>25867845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-64d8388e387e54cd3334381854bc0f0452aec8493c6d1b80e76c5f27fc5fa9193</originalsourceid><addsrcrecordid>eNqNkD1PwzAQQC0EEqUwsDJlQEgMKbbPdmwxofIpVWIA5sh1zpVRPoqdDvz7pkoFIyx3y7sn3SPknNEZY9TcgJgxToGrAzJhBkwOEswhmVCmeK4118fkJKVPSpmQFCbk9i20q01tY-gDpqzz2TqG1oW1rbMqRHR96NrMB6yrlPnYNRnk91lo7ArTKTnytk54tt9T8vH48D5_zhevTy_zu0XuBIg-V6LSoDWCLlAKVwGAAM20FEtHPRWSW3RaGHCqYktNsVBOel74YVozPDElV6N3HbuvDaa-bEJyWNe2xW6TSq4V0ELxv0GpC2qM-Q-oCi3kAF6PoItdShF9OeRpbPwuGS13wUsQ5Rh8YC_3UpucrX20Q8f0cyDFDhMDdjFiARF_daNjC6flhT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25867845</pqid></control><display><type>article</type><title>Singularities of principal direction fields from 3-D images</title><source>IEEE Electronic Library (IEL)</source><creator>Sander, P.T. ; Zucker, S.W.</creator><creatorcontrib>Sander, P.T. ; Zucker, S.W.</creatorcontrib><description>Generic singularities can provide position-independent information about the qualitative shape of surfaces. The authors determine the singularities of the principal direction fields of a surface (its umbilic points) from a computation of the index of the fields. The authors present examples both for 3-D synthetic images to which noise has been added and for clinical magnetic resonance images.&lt; &gt;</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.120326</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithm design and analysis ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Geometry ; Image analysis ; Magnetic analysis ; Magnetic noise ; Magnetic resonance ; Noise shaping ; Pattern recognition. Digital image processing. Computational geometry ; Shape ; Yield estimation</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1992-03, Vol.14 (3), p.309-317</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-64d8388e387e54cd3334381854bc0f0452aec8493c6d1b80e76c5f27fc5fa9193</citedby><cites>FETCH-LOGICAL-c434t-64d8388e387e54cd3334381854bc0f0452aec8493c6d1b80e76c5f27fc5fa9193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/120326$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/120326$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5420324$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sander, P.T.</creatorcontrib><creatorcontrib>Zucker, S.W.</creatorcontrib><title>Singularities of principal direction fields from 3-D images</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Generic singularities can provide position-independent information about the qualitative shape of surfaces. The authors determine the singularities of the principal direction fields of a surface (its umbilic points) from a computation of the index of the fields. The authors present examples both for 3-D synthetic images to which noise has been added and for clinical magnetic resonance images.&lt; &gt;</description><subject>Algorithm design and analysis</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Image analysis</subject><subject>Magnetic analysis</subject><subject>Magnetic noise</subject><subject>Magnetic resonance</subject><subject>Noise shaping</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Shape</subject><subject>Yield estimation</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQQC0EEqUwsDJlQEgMKbbPdmwxofIpVWIA5sh1zpVRPoqdDvz7pkoFIyx3y7sn3SPknNEZY9TcgJgxToGrAzJhBkwOEswhmVCmeK4118fkJKVPSpmQFCbk9i20q01tY-gDpqzz2TqG1oW1rbMqRHR96NrMB6yrlPnYNRnk91lo7ArTKTnytk54tt9T8vH48D5_zhevTy_zu0XuBIg-V6LSoDWCLlAKVwGAAM20FEtHPRWSW3RaGHCqYktNsVBOel74YVozPDElV6N3HbuvDaa-bEJyWNe2xW6TSq4V0ELxv0GpC2qM-Q-oCi3kAF6PoItdShF9OeRpbPwuGS13wUsQ5Rh8YC_3UpucrX20Q8f0cyDFDhMDdjFiARF_daNjC6flhT4</recordid><startdate>19920301</startdate><enddate>19920301</enddate><creator>Sander, P.T.</creator><creator>Zucker, S.W.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19920301</creationdate><title>Singularities of principal direction fields from 3-D images</title><author>Sander, P.T. ; Zucker, S.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-64d8388e387e54cd3334381854bc0f0452aec8493c6d1b80e76c5f27fc5fa9193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Algorithm design and analysis</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Image analysis</topic><topic>Magnetic analysis</topic><topic>Magnetic noise</topic><topic>Magnetic resonance</topic><topic>Noise shaping</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Shape</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sander, P.T.</creatorcontrib><creatorcontrib>Zucker, S.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sander, P.T.</au><au>Zucker, S.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singularities of principal direction fields from 3-D images</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1992-03-01</date><risdate>1992</risdate><volume>14</volume><issue>3</issue><spage>309</spage><epage>317</epage><pages>309-317</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Generic singularities can provide position-independent information about the qualitative shape of surfaces. The authors determine the singularities of the principal direction fields of a surface (its umbilic points) from a computation of the index of the fields. The authors present examples both for 3-D synthetic images to which noise has been added and for clinical magnetic resonance images.&lt; &gt;</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.120326</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1992-03, Vol.14 (3), p.309-317
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_25870999
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Geometry
Image analysis
Magnetic analysis
Magnetic noise
Magnetic resonance
Noise shaping
Pattern recognition. Digital image processing. Computational geometry
Shape
Yield estimation
title Singularities of principal direction fields from 3-D images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singularities%20of%20principal%20direction%20fields%20from%203-D%20images&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Sander,%20P.T.&rft.date=1992-03-01&rft.volume=14&rft.issue=3&rft.spage=309&rft.epage=317&rft.pages=309-317&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.120326&rft_dat=%3Cproquest_RIE%3E25867845%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25867845&rft_id=info:pmid/&rft_ieee_id=120326&rfr_iscdi=true