Defect-rich CeO2 in a hollow carbon matrix engineered from a microporous organic platform: a hydroxide-assisted high performance pseudocapacitive material
A microporous organic polymer (MOP) was utilized for the engineering of nanoparticulate CeO2 in a hollow carbon matrix (H-C/CeO2). After CeO2 nanoparticles were incorporated into a hollow MOP platform (H-MOP) through the decomposition of cerium acetate, successive carbonization produced H-C/CeO2. Th...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2021-11, Vol.13 (43), p.18173-18181 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18181 |
---|---|
container_issue | 43 |
container_start_page | 18173 |
container_title | Nanoscale |
container_volume | 13 |
creator | Jeong, Hyeon Seok Chang Wan Kang Yoon, Myung Sang Moon Lee Hae Jin Kim Son, Seung Uk |
description | A microporous organic polymer (MOP) was utilized for the engineering of nanoparticulate CeO2 in a hollow carbon matrix (H-C/CeO2). After CeO2 nanoparticles were incorporated into a hollow MOP platform (H-MOP) through the decomposition of cerium acetate, successive carbonization produced H-C/CeO2. The redox feature of defective CeO2 in a conductive carbon matrix induced promising pseudocapacitive behavior. In particular, the H-C/CeO2 showed excellent electrochemical performance in an alkaline electrolyte (KOH), due to the hydroxide ion-assisted redox behavior of defective CeO2. H-C/CeO2-3 with an optimized amount of CeO2 showed specific capacitances of up to 527 (@0.5 A g−1) and 493 F g−1 (@1 A g−1). Even at high current densities of 10 and 20 A g−1, the H-C/CeO2-3 maintained high capacitances of 458 and 440 F g−1, respectively. After 10 000 cycling tests, the H-C/CeO2-3 retained the 94–95% capacitance of the first cycle. |
doi_str_mv | 10.1039/d1nr05052d |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2586998694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596062230</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-4b6c9adf8d8c656d1459c983eb5b23b04d0b4662e7ae7b2b07f9a1cee69c36093</originalsourceid><addsrcrecordid>eNpdj81OwzAQhC0EEqVw4QksceEScGzHibmh8itV6gXOlX82javEDnYC5VV4WlKBOHBYzR6-md1B6DwnVzlh8trmPpKCFNQeoBklnGSMlfTwbxf8GJ2ktCVESCbYDH3dQQ1myKIzDV7AimLnscJNaNvwgY2KOnjcqSG6HQa_cR4ggsV1DN2Edc7E0IcYxoRD3CjvDO5bNdQhdjf7mE8bw85ZyFRKLg2Ts3GbBvcQ94jyBnCfYLTBqF4ZN7h32F-D6FR7io5q1SY4-9U5en24f1k8ZcvV4_Pidpn1ORdDxrUwUtm6spURhbA5L6SRFQNdaMo04ZZoLgSFUkGpqSZlLVVuAIQ0TBDJ5ujyJ7eP4W2ENKw7lwy0rfIwFVvTohJSTsMn9OIfug1j9NN3EyUFEZQywr4BDtt63A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596062230</pqid></control><display><type>article</type><title>Defect-rich CeO2 in a hollow carbon matrix engineered from a microporous organic platform: a hydroxide-assisted high performance pseudocapacitive material</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Jeong, Hyeon Seok ; Chang Wan Kang ; Yoon, Myung ; Sang Moon Lee ; Hae Jin Kim ; Son, Seung Uk</creator><creatorcontrib>Jeong, Hyeon Seok ; Chang Wan Kang ; Yoon, Myung ; Sang Moon Lee ; Hae Jin Kim ; Son, Seung Uk</creatorcontrib><description>A microporous organic polymer (MOP) was utilized for the engineering of nanoparticulate CeO2 in a hollow carbon matrix (H-C/CeO2). After CeO2 nanoparticles were incorporated into a hollow MOP platform (H-MOP) through the decomposition of cerium acetate, successive carbonization produced H-C/CeO2. The redox feature of defective CeO2 in a conductive carbon matrix induced promising pseudocapacitive behavior. In particular, the H-C/CeO2 showed excellent electrochemical performance in an alkaline electrolyte (KOH), due to the hydroxide ion-assisted redox behavior of defective CeO2. H-C/CeO2-3 with an optimized amount of CeO2 showed specific capacitances of up to 527 (@0.5 A g−1) and 493 F g−1 (@1 A g−1). Even at high current densities of 10 and 20 A g−1, the H-C/CeO2-3 maintained high capacitances of 458 and 440 F g−1, respectively. After 10 000 cycling tests, the H-C/CeO2-3 retained the 94–95% capacitance of the first cycle.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr05052d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon ; Cerium oxides ; Electrochemical analysis ; Nanoparticles</subject><ispartof>Nanoscale, 2021-11, Vol.13 (43), p.18173-18181</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Jeong, Hyeon Seok</creatorcontrib><creatorcontrib>Chang Wan Kang</creatorcontrib><creatorcontrib>Yoon, Myung</creatorcontrib><creatorcontrib>Sang Moon Lee</creatorcontrib><creatorcontrib>Hae Jin Kim</creatorcontrib><creatorcontrib>Son, Seung Uk</creatorcontrib><title>Defect-rich CeO2 in a hollow carbon matrix engineered from a microporous organic platform: a hydroxide-assisted high performance pseudocapacitive material</title><title>Nanoscale</title><description>A microporous organic polymer (MOP) was utilized for the engineering of nanoparticulate CeO2 in a hollow carbon matrix (H-C/CeO2). After CeO2 nanoparticles were incorporated into a hollow MOP platform (H-MOP) through the decomposition of cerium acetate, successive carbonization produced H-C/CeO2. The redox feature of defective CeO2 in a conductive carbon matrix induced promising pseudocapacitive behavior. In particular, the H-C/CeO2 showed excellent electrochemical performance in an alkaline electrolyte (KOH), due to the hydroxide ion-assisted redox behavior of defective CeO2. H-C/CeO2-3 with an optimized amount of CeO2 showed specific capacitances of up to 527 (@0.5 A g−1) and 493 F g−1 (@1 A g−1). Even at high current densities of 10 and 20 A g−1, the H-C/CeO2-3 maintained high capacitances of 458 and 440 F g−1, respectively. After 10 000 cycling tests, the H-C/CeO2-3 retained the 94–95% capacitance of the first cycle.</description><subject>Carbon</subject><subject>Cerium oxides</subject><subject>Electrochemical analysis</subject><subject>Nanoparticles</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdj81OwzAQhC0EEqVw4QksceEScGzHibmh8itV6gXOlX82javEDnYC5VV4WlKBOHBYzR6-md1B6DwnVzlh8trmPpKCFNQeoBklnGSMlfTwbxf8GJ2ktCVESCbYDH3dQQ1myKIzDV7AimLnscJNaNvwgY2KOnjcqSG6HQa_cR4ggsV1DN2Edc7E0IcYxoRD3CjvDO5bNdQhdjf7mE8bw85ZyFRKLg2Ts3GbBvcQ94jyBnCfYLTBqF4ZN7h32F-D6FR7io5q1SY4-9U5en24f1k8ZcvV4_Pidpn1ORdDxrUwUtm6spURhbA5L6SRFQNdaMo04ZZoLgSFUkGpqSZlLVVuAIQ0TBDJ5ujyJ7eP4W2ENKw7lwy0rfIwFVvTohJSTsMn9OIfug1j9NN3EyUFEZQywr4BDtt63A</recordid><startdate>20211111</startdate><enddate>20211111</enddate><creator>Jeong, Hyeon Seok</creator><creator>Chang Wan Kang</creator><creator>Yoon, Myung</creator><creator>Sang Moon Lee</creator><creator>Hae Jin Kim</creator><creator>Son, Seung Uk</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20211111</creationdate><title>Defect-rich CeO2 in a hollow carbon matrix engineered from a microporous organic platform: a hydroxide-assisted high performance pseudocapacitive material</title><author>Jeong, Hyeon Seok ; Chang Wan Kang ; Yoon, Myung ; Sang Moon Lee ; Hae Jin Kim ; Son, Seung Uk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-4b6c9adf8d8c656d1459c983eb5b23b04d0b4662e7ae7b2b07f9a1cee69c36093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Cerium oxides</topic><topic>Electrochemical analysis</topic><topic>Nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Hyeon Seok</creatorcontrib><creatorcontrib>Chang Wan Kang</creatorcontrib><creatorcontrib>Yoon, Myung</creatorcontrib><creatorcontrib>Sang Moon Lee</creatorcontrib><creatorcontrib>Hae Jin Kim</creatorcontrib><creatorcontrib>Son, Seung Uk</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Hyeon Seok</au><au>Chang Wan Kang</au><au>Yoon, Myung</au><au>Sang Moon Lee</au><au>Hae Jin Kim</au><au>Son, Seung Uk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect-rich CeO2 in a hollow carbon matrix engineered from a microporous organic platform: a hydroxide-assisted high performance pseudocapacitive material</atitle><jtitle>Nanoscale</jtitle><date>2021-11-11</date><risdate>2021</risdate><volume>13</volume><issue>43</issue><spage>18173</spage><epage>18181</epage><pages>18173-18181</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>A microporous organic polymer (MOP) was utilized for the engineering of nanoparticulate CeO2 in a hollow carbon matrix (H-C/CeO2). After CeO2 nanoparticles were incorporated into a hollow MOP platform (H-MOP) through the decomposition of cerium acetate, successive carbonization produced H-C/CeO2. The redox feature of defective CeO2 in a conductive carbon matrix induced promising pseudocapacitive behavior. In particular, the H-C/CeO2 showed excellent electrochemical performance in an alkaline electrolyte (KOH), due to the hydroxide ion-assisted redox behavior of defective CeO2. H-C/CeO2-3 with an optimized amount of CeO2 showed specific capacitances of up to 527 (@0.5 A g−1) and 493 F g−1 (@1 A g−1). Even at high current densities of 10 and 20 A g−1, the H-C/CeO2-3 maintained high capacitances of 458 and 440 F g−1, respectively. After 10 000 cycling tests, the H-C/CeO2-3 retained the 94–95% capacitance of the first cycle.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nr05052d</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2021-11, Vol.13 (43), p.18173-18181 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2586998694 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Carbon Cerium oxides Electrochemical analysis Nanoparticles |
title | Defect-rich CeO2 in a hollow carbon matrix engineered from a microporous organic platform: a hydroxide-assisted high performance pseudocapacitive material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect-rich%20CeO2%20in%20a%20hollow%20carbon%20matrix%20engineered%20from%20a%20microporous%20organic%20platform:%20a%20hydroxide-assisted%20high%20performance%20pseudocapacitive%20material&rft.jtitle=Nanoscale&rft.au=Jeong,%20Hyeon%20Seok&rft.date=2021-11-11&rft.volume=13&rft.issue=43&rft.spage=18173&rft.epage=18181&rft.pages=18173-18181&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr05052d&rft_dat=%3Cproquest%3E2596062230%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596062230&rft_id=info:pmid/&rfr_iscdi=true |