Electroencephalogram variability analysis for monitoring depth of anesthesia

. In this paper, a new approach of extracting and measuring the variability in electroencephalogram (EEG) was proposed to assess the depth of anesthesia (DOA) under general anesthesia. . The EEG variability (EEGV) was extracted as a fluctuation in time interval that occurs between two local maxima o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2021-12, Vol.18 (6), p.66015
Hauptverfasser: Chen, Yi-Feng, Fan, Shou-Zen, Abbod, Maysam F, Shieh, Jiann-Shing, Zhang, Mingming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 66015
container_title Journal of neural engineering
container_volume 18
creator Chen, Yi-Feng
Fan, Shou-Zen
Abbod, Maysam F
Shieh, Jiann-Shing
Zhang, Mingming
description . In this paper, a new approach of extracting and measuring the variability in electroencephalogram (EEG) was proposed to assess the depth of anesthesia (DOA) under general anesthesia. . The EEG variability (EEGV) was extracted as a fluctuation in time interval that occurs between two local maxima of EEG. Eight parameters related to EEGV were measured in time and frequency domains, and compared with state-of-the-art DOA estimation parameters, including sample entropy, permutation entropy, median frequency and spectral edge frequency of EEG. The area under the receiver-operator characteristics curve (AUC) and Pearson correlation coefficient were used to validate its performance on 56 patients. . Our proposed EEGV-derived parameters yield significant difference for discriminating between awake and anesthesia stages at a significance level of 0.05, as well as improvement in AUC and correlation coefficient on average, which surpasses the conventional features of EEG in detection accuracy of unconscious state and tracking the level of consciousness. . To sum up, EEGV analysis provides a new perspective in quantifying EEG and corresponding parameters are powerful and promising for monitoring DOA under clinical situations.
doi_str_mv 10.1088/1741-2552/ac3316
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2586457314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586457314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-cbf6c5b43c787a4e63c550a39e65451ec55aca3b84b5b6f7c0a0771578c1d1443</originalsourceid><addsrcrecordid>eNp1kDlPwzAYQC0EoqWwM6FsMBBqx2dHVJVDqsQCs-U4TusqiYOdIPXf11FKJ5i-Q-879AC4RfAJQSHmiBOUZpRmc6UxRuwMTE-t81PO4ARchbCDECO-gJdggglbUIGyKVivKqM770yjTbtVldt4VSc_yluV28p2-0Q1qtoHG5LS-aR2je2ct80mKUzbbRNXRsCEbmuCVdfgolRVMDfHOANfL6vP5Vu6_nh9Xz6vU42Z6FKdl0zTnGDNBVfEMKwphQovDKOEIhMrpRXOBclpzkquoYKcI8qFRgUiBM_Aw7i39e67j9dlbYM2VRVfcX2QGRWMUI7RgMIR1d6F4E0pW29r5fcSQTk4lIMkOQiTo8M4cnfc3ue1KU4Dv9IicD8C1rVy53ofDQW5a4xEQjIJGYOIyrYoI_n4B_nv5QPg3ogb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586457314</pqid></control><display><type>article</type><title>Electroencephalogram variability analysis for monitoring depth of anesthesia</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chen, Yi-Feng ; Fan, Shou-Zen ; Abbod, Maysam F ; Shieh, Jiann-Shing ; Zhang, Mingming</creator><creatorcontrib>Chen, Yi-Feng ; Fan, Shou-Zen ; Abbod, Maysam F ; Shieh, Jiann-Shing ; Zhang, Mingming</creatorcontrib><description>. In this paper, a new approach of extracting and measuring the variability in electroencephalogram (EEG) was proposed to assess the depth of anesthesia (DOA) under general anesthesia. . The EEG variability (EEGV) was extracted as a fluctuation in time interval that occurs between two local maxima of EEG. Eight parameters related to EEGV were measured in time and frequency domains, and compared with state-of-the-art DOA estimation parameters, including sample entropy, permutation entropy, median frequency and spectral edge frequency of EEG. The area under the receiver-operator characteristics curve (AUC) and Pearson correlation coefficient were used to validate its performance on 56 patients. . Our proposed EEGV-derived parameters yield significant difference for discriminating between awake and anesthesia stages at a significance level of 0.05, as well as improvement in AUC and correlation coefficient on average, which surpasses the conventional features of EEG in detection accuracy of unconscious state and tracking the level of consciousness. . To sum up, EEGV analysis provides a new perspective in quantifying EEG and corresponding parameters are powerful and promising for monitoring DOA under clinical situations.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ac3316</identifier><identifier>PMID: 34695812</identifier><identifier>CODEN: JNEIEZ</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Anesthesia, General - methods ; Consciousness ; depth of anesthesia ; electroencephalogram ; Electroencephalography - methods ; Entropy ; general anesthesia ; Humans ; variability analysis</subject><ispartof>Journal of neural engineering, 2021-12, Vol.18 (6), p.66015</ispartof><rights>2021 IOP Publishing Ltd</rights><rights>2021 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-cbf6c5b43c787a4e63c550a39e65451ec55aca3b84b5b6f7c0a0771578c1d1443</citedby><cites>FETCH-LOGICAL-c368t-cbf6c5b43c787a4e63c550a39e65451ec55aca3b84b5b6f7c0a0771578c1d1443</cites><orcidid>0000-0002-2709-6036 ; 0000-0001-8016-1856 ; 0000-0002-6407-5090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/ac3316/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34695812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yi-Feng</creatorcontrib><creatorcontrib>Fan, Shou-Zen</creatorcontrib><creatorcontrib>Abbod, Maysam F</creatorcontrib><creatorcontrib>Shieh, Jiann-Shing</creatorcontrib><creatorcontrib>Zhang, Mingming</creatorcontrib><title>Electroencephalogram variability analysis for monitoring depth of anesthesia</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>. In this paper, a new approach of extracting and measuring the variability in electroencephalogram (EEG) was proposed to assess the depth of anesthesia (DOA) under general anesthesia. . The EEG variability (EEGV) was extracted as a fluctuation in time interval that occurs between two local maxima of EEG. Eight parameters related to EEGV were measured in time and frequency domains, and compared with state-of-the-art DOA estimation parameters, including sample entropy, permutation entropy, median frequency and spectral edge frequency of EEG. The area under the receiver-operator characteristics curve (AUC) and Pearson correlation coefficient were used to validate its performance on 56 patients. . Our proposed EEGV-derived parameters yield significant difference for discriminating between awake and anesthesia stages at a significance level of 0.05, as well as improvement in AUC and correlation coefficient on average, which surpasses the conventional features of EEG in detection accuracy of unconscious state and tracking the level of consciousness. . To sum up, EEGV analysis provides a new perspective in quantifying EEG and corresponding parameters are powerful and promising for monitoring DOA under clinical situations.</description><subject>Anesthesia, General - methods</subject><subject>Consciousness</subject><subject>depth of anesthesia</subject><subject>electroencephalogram</subject><subject>Electroencephalography - methods</subject><subject>Entropy</subject><subject>general anesthesia</subject><subject>Humans</subject><subject>variability analysis</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDlPwzAYQC0EoqWwM6FsMBBqx2dHVJVDqsQCs-U4TusqiYOdIPXf11FKJ5i-Q-879AC4RfAJQSHmiBOUZpRmc6UxRuwMTE-t81PO4ARchbCDECO-gJdggglbUIGyKVivKqM770yjTbtVldt4VSc_yluV28p2-0Q1qtoHG5LS-aR2je2ct80mKUzbbRNXRsCEbmuCVdfgolRVMDfHOANfL6vP5Vu6_nh9Xz6vU42Z6FKdl0zTnGDNBVfEMKwphQovDKOEIhMrpRXOBclpzkquoYKcI8qFRgUiBM_Aw7i39e67j9dlbYM2VRVfcX2QGRWMUI7RgMIR1d6F4E0pW29r5fcSQTk4lIMkOQiTo8M4cnfc3ue1KU4Dv9IicD8C1rVy53ofDQW5a4xEQjIJGYOIyrYoI_n4B_nv5QPg3ogb</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Chen, Yi-Feng</creator><creator>Fan, Shou-Zen</creator><creator>Abbod, Maysam F</creator><creator>Shieh, Jiann-Shing</creator><creator>Zhang, Mingming</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2709-6036</orcidid><orcidid>https://orcid.org/0000-0001-8016-1856</orcidid><orcidid>https://orcid.org/0000-0002-6407-5090</orcidid></search><sort><creationdate>20211201</creationdate><title>Electroencephalogram variability analysis for monitoring depth of anesthesia</title><author>Chen, Yi-Feng ; Fan, Shou-Zen ; Abbod, Maysam F ; Shieh, Jiann-Shing ; Zhang, Mingming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-cbf6c5b43c787a4e63c550a39e65451ec55aca3b84b5b6f7c0a0771578c1d1443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anesthesia, General - methods</topic><topic>Consciousness</topic><topic>depth of anesthesia</topic><topic>electroencephalogram</topic><topic>Electroencephalography - methods</topic><topic>Entropy</topic><topic>general anesthesia</topic><topic>Humans</topic><topic>variability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yi-Feng</creatorcontrib><creatorcontrib>Fan, Shou-Zen</creatorcontrib><creatorcontrib>Abbod, Maysam F</creatorcontrib><creatorcontrib>Shieh, Jiann-Shing</creatorcontrib><creatorcontrib>Zhang, Mingming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yi-Feng</au><au>Fan, Shou-Zen</au><au>Abbod, Maysam F</au><au>Shieh, Jiann-Shing</au><au>Zhang, Mingming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroencephalogram variability analysis for monitoring depth of anesthesia</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>18</volume><issue>6</issue><spage>66015</spage><pages>66015-</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEIEZ</coden><abstract>. In this paper, a new approach of extracting and measuring the variability in electroencephalogram (EEG) was proposed to assess the depth of anesthesia (DOA) under general anesthesia. . The EEG variability (EEGV) was extracted as a fluctuation in time interval that occurs between two local maxima of EEG. Eight parameters related to EEGV were measured in time and frequency domains, and compared with state-of-the-art DOA estimation parameters, including sample entropy, permutation entropy, median frequency and spectral edge frequency of EEG. The area under the receiver-operator characteristics curve (AUC) and Pearson correlation coefficient were used to validate its performance on 56 patients. . Our proposed EEGV-derived parameters yield significant difference for discriminating between awake and anesthesia stages at a significance level of 0.05, as well as improvement in AUC and correlation coefficient on average, which surpasses the conventional features of EEG in detection accuracy of unconscious state and tracking the level of consciousness. . To sum up, EEGV analysis provides a new perspective in quantifying EEG and corresponding parameters are powerful and promising for monitoring DOA under clinical situations.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>34695812</pmid><doi>10.1088/1741-2552/ac3316</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2709-6036</orcidid><orcidid>https://orcid.org/0000-0001-8016-1856</orcidid><orcidid>https://orcid.org/0000-0002-6407-5090</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1741-2560
ispartof Journal of neural engineering, 2021-12, Vol.18 (6), p.66015
issn 1741-2560
1741-2552
language eng
recordid cdi_proquest_miscellaneous_2586457314
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Anesthesia, General - methods
Consciousness
depth of anesthesia
electroencephalogram
Electroencephalography - methods
Entropy
general anesthesia
Humans
variability analysis
title Electroencephalogram variability analysis for monitoring depth of anesthesia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroencephalogram%20variability%20analysis%20for%20monitoring%20depth%20of%20anesthesia&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Chen,%20Yi-Feng&rft.date=2021-12-01&rft.volume=18&rft.issue=6&rft.spage=66015&rft.pages=66015-&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEIEZ&rft_id=info:doi/10.1088/1741-2552/ac3316&rft_dat=%3Cproquest_cross%3E2586457314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586457314&rft_id=info:pmid/34695812&rfr_iscdi=true