Recent advances in lignocellulosic biomass white biotechnology for bioplastics
[Display omitted] •Lignocellulosic biomass as an alternative to glucose for bioplastic synthesis.•Aliphatic PLA and PHB are commercially available as bioplastics.•Aromatic biomonomers as starting materials for high-performance bioplastics.•Cost-effective technologies should be developed for biomonom...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2022-01, Vol.344 (Pt B), p.126165-126165, Article 126165 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126165 |
---|---|
container_issue | Pt B |
container_start_page | 126165 |
container_title | Bioresource technology |
container_volume | 344 |
creator | Kawaguchi, Hideo Takada, Kenji Elkasaby, Taghreed Pangestu, Radityo Toyoshima, Masakazu Kahar, Prihardi Ogino, Chiaki Kaneko, Tatsuo Kondo, Akihiko |
description | [Display omitted]
•Lignocellulosic biomass as an alternative to glucose for bioplastic synthesis.•Aliphatic PLA and PHB are commercially available as bioplastics.•Aromatic biomonomers as starting materials for high-performance bioplastics.•Cost-effective technologies should be developed for biomonomer purification.•High thermal/mechanical performance of plastics from biomonomers.
Lignocellulosic biomass has great potential as an inedible feedstock for bioplastic synthesis, although its use is still limited compared to current edible feedstocks of glucose and starch. This review focuses on recent advances in the production of biopolymers and biomonomers from lignocellulosic feedstocks with downstream processing and chemical polymer syntheses. In microbial production, four routes composed of existing poly (lactic acid) and polyhydroxyalkanoates (PHAs) and the emerging biomonomers of itaconic acid and aromatic compounds were presented to review present challenges and future perspectives, focusing on the use of lignocellulosic feedstocks. Recently, advances in purification technologies decreased the number of processes and their environmental burden. Additionally, the unique structures and high-performance of emerging lignocellulose-based bioplastics have expanded the possibilities for the use of bioplastics. The sequence of processes provides insight into the emerging technologies that are needed for the practical use of bioplastics made from lignocellulosic biomass. |
doi_str_mv | 10.1016/j.biortech.2021.126165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2586450204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852421015078</els_id><sourcerecordid>2586450204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-8277ddbf81c6fd1eb59c6b1dd9a12d8cda9bea04ab6f263fc8db70cd766688153</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EoqXwClWOXBJsJ3acG6jiT6pAQnC2HHvTukrjYidFfXsSpeXKabWrmZ3dD6E5wQnBhN9tktI634JeJxRTkhDKCWdnaEpEnsa0yPk5muKC41gwmk3QVQgbjHFKcnqJJmnGC8YEm6K3D9DQtJEye9VoCJFtotquGqehrrvaBaujPmmrQoh-1raFoRtiG1e71SGqnB8mu1qF1upwjS4qVQe4OdYZ-np6_Fy8xMv359fFwzLWGeFtLGieG1NWgmheGQIlKzQviTGFItQIbVRRgsKZKnlFeVppYcoca5NzzoUgLJ2h23HvzrvvDkIrtzYMJ6sGXBckZYJnDFOc9VI-SrV3IXio5M7brfIHSbAcWMqNPLGUA0s5suyN82NGV27B_NlO8HrB_SiA_tO9BS-DttBTNNaDbqVx9r-MXyTBitk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586450204</pqid></control><display><type>article</type><title>Recent advances in lignocellulosic biomass white biotechnology for bioplastics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kawaguchi, Hideo ; Takada, Kenji ; Elkasaby, Taghreed ; Pangestu, Radityo ; Toyoshima, Masakazu ; Kahar, Prihardi ; Ogino, Chiaki ; Kaneko, Tatsuo ; Kondo, Akihiko</creator><creatorcontrib>Kawaguchi, Hideo ; Takada, Kenji ; Elkasaby, Taghreed ; Pangestu, Radityo ; Toyoshima, Masakazu ; Kahar, Prihardi ; Ogino, Chiaki ; Kaneko, Tatsuo ; Kondo, Akihiko</creatorcontrib><description>[Display omitted]
•Lignocellulosic biomass as an alternative to glucose for bioplastic synthesis.•Aliphatic PLA and PHB are commercially available as bioplastics.•Aromatic biomonomers as starting materials for high-performance bioplastics.•Cost-effective technologies should be developed for biomonomer purification.•High thermal/mechanical performance of plastics from biomonomers.
Lignocellulosic biomass has great potential as an inedible feedstock for bioplastic synthesis, although its use is still limited compared to current edible feedstocks of glucose and starch. This review focuses on recent advances in the production of biopolymers and biomonomers from lignocellulosic feedstocks with downstream processing and chemical polymer syntheses. In microbial production, four routes composed of existing poly (lactic acid) and polyhydroxyalkanoates (PHAs) and the emerging biomonomers of itaconic acid and aromatic compounds were presented to review present challenges and future perspectives, focusing on the use of lignocellulosic feedstocks. Recently, advances in purification technologies decreased the number of processes and their environmental burden. Additionally, the unique structures and high-performance of emerging lignocellulose-based bioplastics have expanded the possibilities for the use of bioplastics. The sequence of processes provides insight into the emerging technologies that are needed for the practical use of bioplastics made from lignocellulosic biomass.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2021.126165</identifier><identifier>PMID: 34695585</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biomass ; Bioplastic ; Biotechnology ; Downstream process ; Fermentation ; Lignin ; Lignocellulosic biomass ; Polyhydroxyalkanoates ; Polymer synthesis ; Starch</subject><ispartof>Bioresource technology, 2022-01, Vol.344 (Pt B), p.126165-126165, Article 126165</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-8277ddbf81c6fd1eb59c6b1dd9a12d8cda9bea04ab6f263fc8db70cd766688153</citedby><cites>FETCH-LOGICAL-c416t-8277ddbf81c6fd1eb59c6b1dd9a12d8cda9bea04ab6f263fc8db70cd766688153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852421015078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34695585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kawaguchi, Hideo</creatorcontrib><creatorcontrib>Takada, Kenji</creatorcontrib><creatorcontrib>Elkasaby, Taghreed</creatorcontrib><creatorcontrib>Pangestu, Radityo</creatorcontrib><creatorcontrib>Toyoshima, Masakazu</creatorcontrib><creatorcontrib>Kahar, Prihardi</creatorcontrib><creatorcontrib>Ogino, Chiaki</creatorcontrib><creatorcontrib>Kaneko, Tatsuo</creatorcontrib><creatorcontrib>Kondo, Akihiko</creatorcontrib><title>Recent advances in lignocellulosic biomass white biotechnology for bioplastics</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted]
•Lignocellulosic biomass as an alternative to glucose for bioplastic synthesis.•Aliphatic PLA and PHB are commercially available as bioplastics.•Aromatic biomonomers as starting materials for high-performance bioplastics.•Cost-effective technologies should be developed for biomonomer purification.•High thermal/mechanical performance of plastics from biomonomers.
Lignocellulosic biomass has great potential as an inedible feedstock for bioplastic synthesis, although its use is still limited compared to current edible feedstocks of glucose and starch. This review focuses on recent advances in the production of biopolymers and biomonomers from lignocellulosic feedstocks with downstream processing and chemical polymer syntheses. In microbial production, four routes composed of existing poly (lactic acid) and polyhydroxyalkanoates (PHAs) and the emerging biomonomers of itaconic acid and aromatic compounds were presented to review present challenges and future perspectives, focusing on the use of lignocellulosic feedstocks. Recently, advances in purification technologies decreased the number of processes and their environmental burden. Additionally, the unique structures and high-performance of emerging lignocellulose-based bioplastics have expanded the possibilities for the use of bioplastics. The sequence of processes provides insight into the emerging technologies that are needed for the practical use of bioplastics made from lignocellulosic biomass.</description><subject>Biomass</subject><subject>Bioplastic</subject><subject>Biotechnology</subject><subject>Downstream process</subject><subject>Fermentation</subject><subject>Lignin</subject><subject>Lignocellulosic biomass</subject><subject>Polyhydroxyalkanoates</subject><subject>Polymer synthesis</subject><subject>Starch</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1OwzAQhC0EoqXwClWOXBJsJ3acG6jiT6pAQnC2HHvTukrjYidFfXsSpeXKabWrmZ3dD6E5wQnBhN9tktI634JeJxRTkhDKCWdnaEpEnsa0yPk5muKC41gwmk3QVQgbjHFKcnqJJmnGC8YEm6K3D9DQtJEye9VoCJFtotquGqehrrvaBaujPmmrQoh-1raFoRtiG1e71SGqnB8mu1qF1upwjS4qVQe4OdYZ-np6_Fy8xMv359fFwzLWGeFtLGieG1NWgmheGQIlKzQviTGFItQIbVRRgsKZKnlFeVppYcoca5NzzoUgLJ2h23HvzrvvDkIrtzYMJ6sGXBckZYJnDFOc9VI-SrV3IXio5M7brfIHSbAcWMqNPLGUA0s5suyN82NGV27B_NlO8HrB_SiA_tO9BS-DttBTNNaDbqVx9r-MXyTBitk</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Kawaguchi, Hideo</creator><creator>Takada, Kenji</creator><creator>Elkasaby, Taghreed</creator><creator>Pangestu, Radityo</creator><creator>Toyoshima, Masakazu</creator><creator>Kahar, Prihardi</creator><creator>Ogino, Chiaki</creator><creator>Kaneko, Tatsuo</creator><creator>Kondo, Akihiko</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202201</creationdate><title>Recent advances in lignocellulosic biomass white biotechnology for bioplastics</title><author>Kawaguchi, Hideo ; Takada, Kenji ; Elkasaby, Taghreed ; Pangestu, Radityo ; Toyoshima, Masakazu ; Kahar, Prihardi ; Ogino, Chiaki ; Kaneko, Tatsuo ; Kondo, Akihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-8277ddbf81c6fd1eb59c6b1dd9a12d8cda9bea04ab6f263fc8db70cd766688153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomass</topic><topic>Bioplastic</topic><topic>Biotechnology</topic><topic>Downstream process</topic><topic>Fermentation</topic><topic>Lignin</topic><topic>Lignocellulosic biomass</topic><topic>Polyhydroxyalkanoates</topic><topic>Polymer synthesis</topic><topic>Starch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawaguchi, Hideo</creatorcontrib><creatorcontrib>Takada, Kenji</creatorcontrib><creatorcontrib>Elkasaby, Taghreed</creatorcontrib><creatorcontrib>Pangestu, Radityo</creatorcontrib><creatorcontrib>Toyoshima, Masakazu</creatorcontrib><creatorcontrib>Kahar, Prihardi</creatorcontrib><creatorcontrib>Ogino, Chiaki</creatorcontrib><creatorcontrib>Kaneko, Tatsuo</creatorcontrib><creatorcontrib>Kondo, Akihiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawaguchi, Hideo</au><au>Takada, Kenji</au><au>Elkasaby, Taghreed</au><au>Pangestu, Radityo</au><au>Toyoshima, Masakazu</au><au>Kahar, Prihardi</au><au>Ogino, Chiaki</au><au>Kaneko, Tatsuo</au><au>Kondo, Akihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in lignocellulosic biomass white biotechnology for bioplastics</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2022-01</date><risdate>2022</risdate><volume>344</volume><issue>Pt B</issue><spage>126165</spage><epage>126165</epage><pages>126165-126165</pages><artnum>126165</artnum><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted]
•Lignocellulosic biomass as an alternative to glucose for bioplastic synthesis.•Aliphatic PLA and PHB are commercially available as bioplastics.•Aromatic biomonomers as starting materials for high-performance bioplastics.•Cost-effective technologies should be developed for biomonomer purification.•High thermal/mechanical performance of plastics from biomonomers.
Lignocellulosic biomass has great potential as an inedible feedstock for bioplastic synthesis, although its use is still limited compared to current edible feedstocks of glucose and starch. This review focuses on recent advances in the production of biopolymers and biomonomers from lignocellulosic feedstocks with downstream processing and chemical polymer syntheses. In microbial production, four routes composed of existing poly (lactic acid) and polyhydroxyalkanoates (PHAs) and the emerging biomonomers of itaconic acid and aromatic compounds were presented to review present challenges and future perspectives, focusing on the use of lignocellulosic feedstocks. Recently, advances in purification technologies decreased the number of processes and their environmental burden. Additionally, the unique structures and high-performance of emerging lignocellulose-based bioplastics have expanded the possibilities for the use of bioplastics. The sequence of processes provides insight into the emerging technologies that are needed for the practical use of bioplastics made from lignocellulosic biomass.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34695585</pmid><doi>10.1016/j.biortech.2021.126165</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2022-01, Vol.344 (Pt B), p.126165-126165, Article 126165 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_2586450204 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biomass Bioplastic Biotechnology Downstream process Fermentation Lignin Lignocellulosic biomass Polyhydroxyalkanoates Polymer synthesis Starch |
title | Recent advances in lignocellulosic biomass white biotechnology for bioplastics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20lignocellulosic%20biomass%20white%20biotechnology%20for%20bioplastics&rft.jtitle=Bioresource%20technology&rft.au=Kawaguchi,%20Hideo&rft.date=2022-01&rft.volume=344&rft.issue=Pt%20B&rft.spage=126165&rft.epage=126165&rft.pages=126165-126165&rft.artnum=126165&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2021.126165&rft_dat=%3Cproquest_cross%3E2586450204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586450204&rft_id=info:pmid/34695585&rft_els_id=S0960852421015078&rfr_iscdi=true |